7.Binomial Theorem
hard

यदि $\left( x ^{2}+\frac{1}{ bx }\right)^{11}, b \neq 0$, में $x ^{7}$ का गुणांक तथा $\left( x -\frac{1}{ bx ^{2}}\right)^{11}$, में $x ^{-7}$ का गुणांक बराबर है, तो $b$ का मान बराबर है ?

A

$-1$

B

$2$

C

$-2$

D

$1$

(JEE MAIN-2021)

Solution

Coefficient of $x^{7} \operatorname{in}\left(x^{2}+\frac{1}{b x}\right)^{11}$

${ }^{11} \mathrm{C}_{\mathrm{r}}\left(\mathrm{x}^{2}\right)^{11-\mathrm{r}} \cdot\left(\frac{1}{\mathrm{bx}}\right)^{\mathrm{r}}$

${ }^{11} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{22-3 \mathrm{r}} \cdot \frac{1}{\mathrm{~b}^{r}}$

$22-3 \mathrm{r}=7$

$r=5$

$\therefore{ }^{11} \mathrm{C}_{5} \cdot \frac{1}{\mathrm{~b}^{5}} \cdot \mathrm{x}^{7}$

Coefficient of $x^{-7}$ in $\left(x-\frac{b}{b x^{2}}\right)^{11}$

${ }^{11} \mathrm{C}_{\mathrm{r}}(\mathrm{x})^{11-\mathrm{r}} \cdot\left(-\frac{1}{\mathrm{bx}^{2}}\right)^{\mathrm{r}}$

${ }^{11} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{11-3 r} \cdot \frac{(-1)^{r}}{\mathrm{~b}^{r}}$

$11-3 \mathrm{r}=-7 \therefore \mathrm{r}=6$

${ }^{11} \mathrm{C}_{6} \cdot \frac{1}{b^{6}} \mathrm{x}^{-7}$

${ }^{11} \mathrm{C}_{5} \cdot \frac{1}{\mathrm{~b}^{5}}={ }^{11} \mathrm{C}_{6} \cdot \frac{1}{\mathrm{~b}^{6}}$

Since $b \neq 0 \therefore b=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.