यदि $\left( x ^{2}+\frac{1}{ bx }\right)^{11}, b \neq 0$, में $x ^{7}$ का गुणांक तथा $\left( x -\frac{1}{ bx ^{2}}\right)^{11}$, में $x ^{-7}$ का गुणांक बराबर है, तो $b$ का मान बराबर है ?
$-1$
$2$
$-2$
$1$
${(x + a)^n}$ के द्विपद विस्तार में पदों ${x^{n - r}}{a^r}$ तथा ${x^r}{a^{n - r}}$ के गुणांको का अनुपात होगा
माना $\left( x +\frac{ a }{ x ^{2}}\right)^{ n }, x \neq 0$, के प्रसार में तीसरे, चौथे तथा पाँचवें पदों के गुणांक $12: 8: 3$ के अनुपात में है। तो इस प्रसार में $x$ से स्वतंत्र पद है ......... |
यदि $\left(2+\frac{x}{3}\right)^{55}$ का $x$ की आरोही घातों में प्रसार करने पर, प्रसार में दो क्रमिक पदों में $x$ की घातें समान हैं, तो यह पद हैं
$\left(x-\frac{3}{x^{2}}\right)^{m}, x \neq 0,$ जहाँ $m$ एक प्राकृत संख्या है, के प्रसार में पहले तीन पदों के गुणांकों का योग $559$ है। प्रसार में $x^{3}$ वाला पद ज्ञात कीजिए।
यदि $(3+a x)^{9}$ के प्रसार में $x^{2}$ तथा $x^{3}$ के गुणांक समान हों, तो $a$ का मान ज्ञात कीजिए।