यदि किसी दीर्घवृत्त की उत्केन्द्रता $\frac{1}{{\sqrt 2 }}$ हो, तो उसका नाभिलम्ब होगा
लघु अक्ष
अर्ध लघु अक्ष
दीर्घ अक्ष
अर्ध दीर्घ अक्ष
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
शीर्षों $(0,\pm 13),$ नाभियाँ $(0,±5)$
यदि दो बिन्दुओं $A$ तथा $B$ के निर्देशांक क्रमशः $(\sqrt{7}, 0)$ तथा $(-\sqrt{7}, 0)$ हैं और शांकव (conic) $9 x ^{2}+16 y ^{2}$ $=144$ पर कोई बिन्दु $P$ है, तो $PA + PB$ बराबर है
$c$ के उन मानों की संख्या, जिनके लिये सरल रेखा $y = 4x + c$ वक्र $\frac{{{x^2}}}{4} + {y^2} = 1$ को स्पर्श करती है, है
माना एक रेखा $L$, रेखाओं $bx +10 y -8=0$ तथा $2 x -3 y =0, b \in R -\left\{\frac{4}{3}\right\}$ के प्रतिच्छेदन बिन्दु से होकर जाती है। यदि रेखा $L$, बिन्दु $(1,1)$ से भी होकर जाती है तथा वृत्त $17\left( x ^2+ y ^2\right)=16$ को स्पर्श करती है, तो दीर्घवृत्त $\frac{x^2}{5}+\frac{y^2}{b^2}=1$ की उत्केन्द्रता है:
दीर्घवृत्त $3{x^2} + 2{y^2} = 5$ पर बिन्दु $(1, 2)$ से खींची गयीं स्पर्श रेखाओं के बीच कोण है