Gujarati
10-2. Parabola, Ellipse, Hyperbola
normal

आयत $R$ जिसकी भुजायें निर्देशांक अक्षों के समान्तर है के अन्दर दीर्घवत्त $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ को उत्कीर्णित (inscribe) किया गया है। एक अन्य दीर्घवत्त $E _2$ जो बिन्दु $(0,4)$ से गुजरता है और आयत $R$ को परिगत (circumscribe) करता है, की उत्केन्द्रता (eccentricity) निम्न है

A

$\frac{\sqrt{2}}{2}$

B

$\frac{\sqrt{3}}{2}$

C

$\frac{1}{2}$

D

$\frac{3}{4}$

(IIT-2012)

Solution

Let required ellipse is

$E_2: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$

It passes thorugh $(0,4)$

$0+\frac{16}{b^2}=1 \quad \Rightarrow \quad b^2=16$

It also passes through $( \pm 3, \pm 2)$

$\frac{9}{a^2}+\frac{4}{b^2}=1 $

$\frac{9}{a^2}+\frac{1}{4}=1 $

$\frac{9}{a^2}=\frac{3}{4} \quad \Rightarrow \quad a^2=b^2\left(1-e^2\right) $

$\frac{12}{16}=1-e^2 $

$e^2=1-\frac{12}{16}=\frac{4}{16}=\frac{1}{4} $

$e=\frac{1}{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.