- Home
- Standard 11
- Mathematics
आयत $R$ जिसकी भुजायें निर्देशांक अक्षों के समान्तर है के अन्दर दीर्घवत्त $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ को उत्कीर्णित (inscribe) किया गया है। एक अन्य दीर्घवत्त $E _2$ जो बिन्दु $(0,4)$ से गुजरता है और आयत $R$ को परिगत (circumscribe) करता है, की उत्केन्द्रता (eccentricity) निम्न है
$\frac{\sqrt{2}}{2}$
$\frac{\sqrt{3}}{2}$
$\frac{1}{2}$
$\frac{3}{4}$
Solution

Let required ellipse is
$E_2: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$
It passes thorugh $(0,4)$
$0+\frac{16}{b^2}=1 \quad \Rightarrow \quad b^2=16$
It also passes through $( \pm 3, \pm 2)$
$\frac{9}{a^2}+\frac{4}{b^2}=1 $
$\frac{9}{a^2}+\frac{1}{4}=1 $
$\frac{9}{a^2}=\frac{3}{4} \quad \Rightarrow \quad a^2=b^2\left(1-e^2\right) $
$\frac{12}{16}=1-e^2 $
$e^2=1-\frac{12}{16}=\frac{4}{16}=\frac{1}{4} $
$e=\frac{1}{2}$