10-2. Parabola, Ellipse, Hyperbola
hard

यदि बिंदु $(4,6)$ से होकर जाने वाले मानक अतिपरवलय की उत्केंद्रता $2$ है, तो $(4,6)$ पर अतिपरवलय पर खींची गई स्पर्श रेखा का समीकरण है 

A

$2x -3y + 10 = 0$

B

$x -2y + 8 = 0$

C

$2x -y -2 = 0$

D

$3x -2y = 0$

(JEE MAIN-2019)

Solution

Let equation of hyperbola be $\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1\,\,$

passes through $\left( {4,6} \right)$

$ \Rightarrow \frac{{16}}{{{a^2}}} – \frac{{36}}{{{b^2}}} = 1\,\,\,\,\,\,\,…..\left( i \right)$

Also  ${e^2} = 1 + \frac{{{b^2}}}{{{a^2}}} \Rightarrow {b^2} = 3{a^2}\,\,\,\,\,\,\,\,\,……\left( {ii} \right)$

from $(i)$ and $(ii)$

${a^2} = 4,{b^2} = 12$

equation $\frac{{{x^2}}}{4} – \frac{{{y^2}}}{{12}} = 1\,$

Tangent at $\left( {4,6} \right)$ is $x – \frac{y}{2} = 1\,\,\,$

Or

$2x – y = 2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.