यदि बिंदु $(4,6)$ से होकर जाने वाले मानक अतिपरवलय की उत्केंद्रता $2$ है, तो $(4,6)$ पर अतिपरवलय पर खींची गई स्पर्श रेखा का समीकरण है 

  • [JEE MAIN 2019]
  • A

    $2x -3y + 10 = 0$

  • B

    $x -2y + 8 = 0$

  • C

    $2x -y -2 = 0$

  • D

    $3x -2y = 0$

Similar Questions

यदि एक अतिपरवलय बिन्दु $P (10,16)$ से होकर जाता है तथा इसके शीर्ष $(\pm 6,0)$ पर हैं, तो $P$ पर इसके अभिलम्ब का समीकरण है 

  • [JEE MAIN 2020]

माना अतिपरवलय $3 \mathrm{x}^2-4 \mathrm{y}^2=36$ पर बिन्दु $\mathrm{P}\left(\mathrm{x}_0, \mathrm{y}_0\right)$, रेखा $3 \mathrm{x}+2 \mathrm{y}=1$ के निकटतम है। तो $\sqrt{2}\left(\mathrm{y}_0-\mathrm{x}_0\right)$ बराबर है:

  • [JEE MAIN 2023]

अतिपरवलय $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$ के बिन्दु $(8,\;3\sqrt 3 )$ पर अभिलम्ब का समीकरण है  

उस अतिपरवलय का समीकरण ज्ञात कीजिए जिसकी नाभियाँ $(0,±12)$ और नाभिलंब जीवा की लंबाई $36$ है।

अतिपरवलय $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$ के नाभिलंब के एक सिरे (जो प्रथम चतुर्थांश में है) पर खींची गई स्पर्श रेखा $x$-अक्ष तथा $y$-अक्ष को क्रमश बिन्दुओं $A$ तथा $B$ पर मिलती हैं, तो $( OA )^{2}-( OB )^{2}$, जहाँ $O$ मूल बिंदु है, बराबर है

  • [JEE MAIN 2014]