यदि समीकरण $\cos ^{4} \theta+\sin ^{4} \theta+\lambda=0$ के $\theta$ में वास्तविक हल है, तो $\lambda$ निम्न में से किस अन्तराल में स्थित है ?
$\left[-\frac{3}{2},-\frac{5}{4}\right]$
$\left(-\frac{1}{2},-\frac{1}{4}\right]$
$\left(-\frac{5}{4},-1\right)$
$\left[-1,-\frac{1}{2}\right]$
समीकरण $4 \sin ^2 x-4 \cos ^3 x+9-4 \cos x=0$; $x \in[-2 \pi, 2 \pi]$ के हलों की संख्या है :
निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए
$\sec ^{2} 2 x=1-\tan 2 x$
$\theta $का वह मान, जो कि $0$ एवं $\frac{\pi }{2}$ के मध्य हो तथा समीकरण
$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$
को संतुष्ट करता हो, है
यदि $\tan \theta = - \frac{1}{{\sqrt 3 }}$ व $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, तो $\theta $ का मुख्य मान होगा
$\sin 7\theta = \sin 4\theta - \sin \theta $ तथा $0 < \theta < \frac{\pi }{2}$ को सन्तुष्ट करने वाले $\theta $ के मान हैं