- Home
- Standard 11
- Mathematics
9.Straight Line
hard
If the equation of the locus of a point equidistant from the points $({a_1},{b_1})$ and $({a_2},{b_2})$ is $({a_1} - {a_2})x + ({b_1} - {b_2})y + c = 0$, then the value of $‘c’$ is
A
$\frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2)$
B
$a_1^2 - a_2^2 + b_1^2 - b_2^2$
C
$\frac{1}{2}(a_1^2 + a_2^2 + b_1^2 + b_2^2)$
D
$\sqrt {a_1^2 + b_1^2 - a_2^2 - b_2^2} $
(IIT-2003)
Solution
(a) Let the point be $(h,\,k)$
${(h – {a_1})^2} + {(k – {b_1})^2} = {(h – {a_2})^2} + {(k – {b_2})^2}$
Replace $(h,\,k)$ by $(x,\,y)$, we get
$({a_1} – {a_2})x + ({b_1} – {b_2})y + \frac{1}{2}(a_2^2 + b_2^2 – a_1^2 – b_1^2) = 0$
$c = \frac{1}{2}(a_2^2 + b_2^2 – a_1^2 – b_1^2)$.
Standard 11
Mathematics