9.Straight Line
hard

बिन्दुओं $({a_1},{b_1})$ तथा $({a_2},{b_2})$ से समान दूरी पर स्थित किसी बिन्दु का बिन्दुपथ $({a_1} - {a_2})x + ({b_1} - {b_2})y + c = 0$ है, तब $‘c’$ का मान है

A

$\frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2)$

B

$a_1^2 - a_2^2 + b_1^2 - b_2^2$

C

$\frac{1}{2}(a_1^2 + a_2^2 + b_1^2 + b_2^2)$

D

$\sqrt {a_1^2 + b_1^2 - a_2^2 - b_2^2} $

(IIT-2003)

Solution

(a) माना बिन्दु $(h,\,k)$ है, तब
${(h – {a_1})^2} + {(k – {b_1})^2} = {(h – {a_2})^2} + {(k – {b_2})^2}$
अब $(h,\,k)$ को $(x,\,y)$ से प्रतिस्थापित करने पर,
$({a_1} – {a_2})x + ({b_1} – {b_2})y + \frac{1}{2}(a_2^2 + b_2^2 – a_1^2 – b_1^2) = 0$
अत: $c = \frac{1}{2}(a_2^2 + b_2^2 – a_1^2 – b_1^2)$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.