If the first term of an $A.P. $ be $10$, last term is $50$ and the sum of all the terms is $300$, then the number of terms are
$5$
$8$
$10$
$15$
A number is the reciprocal of the other. If the arithmetic mean of the two numbers be $\frac{{13}}{{12}}$, then the numbers are
If $a,b,c,d,e$ are in $A.P.$ then the value of $a + b + 4c$ $ - 4d + e$ in terms of $a$, if possible is
Let $a_1, a_2, a_3, \ldots$ be in an arithmetic progression of positive terms.
Let $\mathrm{A}_{\mathrm{k}}=\mathrm{a}_1{ }^2-\mathrm{a}_2{ }^2+\mathrm{a}_3{ }^2-\mathrm{a}_4{ }^2+\ldots+\mathrm{a}_{2 \mathrm{k}-1}{ }^2-\mathrm{a}_{2 \mathrm{k}}{ }^2$.
If $\mathrm{A}_3=-153, \mathrm{~A}_5=-435$ and $\mathrm{a}_1{ }^2+\mathrm{a}_2{ }^2+\mathrm{a}_3{ }^2=66$, then $\mathrm{a}_{17}-\mathrm{A}_7$ is equal to....................
If ${a^2},\;{b^2},\;{c^2}$ are in $A.P.$, then ${(b + c)^{ - 1}},\;{(c + a)^{ - 1}}$ and ${(a + b)^{ - 1}}$ will be in
The arithmetic mean of the nine numbers in the given set $\{9,99,999,...., 999999999\}$ is a $9$ digit number $N$, all whose digits are distinct. The number $N$ does not contain the digit