यदि किसी समान्तर श्रेणी का प्रथम पद $10$ व अन्तिम पद $50$ है तथा सभी पदों का योग $300$ हो, तो पदों की संख्या है
$5$
$8$
$10$
$15$
मान लें कि $a_n$, एक अंकगणितीय श्रेढ़ी $(arithmetic\,progression)$ है, जहाँ $n \geq 1$ है और इस श्रेढ़ी का पहला पद $2$ और सार्व अंतर $(common\,difference)$ $4$ है। मान लें कि $M_n$ पहले $n$ पदों का औसत है, तब योग $\sum \limits_{n=1}^{10} M_n$ क्या होगा ?
यदि $x,y,z$ समान्तर श्रेणी में हों तथा ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$, ${\tan ^{ - 1}}z$ भी समान्तर श्रेणी में हों, तब
यदि समान्तर श्रेणी के $n$ पदों का योग $3{n^2} + 5n$ व ${T_m} = 164$ हो, तो $m = $
$p , q \in R , q > 0$, के लिए वास्तविक मान फलन $f ( x )=( x - p )^2- q , x \in R$ का विचार कीजिए। माना $a _1, a _2, a _3$ तथा $a _4$ एक धनात्मक सार्व अंतर की संमातर श्रेढ़ी में हैं तथा इनका माध्य $p$ है। यदि $i=1,2,3,4$ के लिए $\left|f\left(a_i\right)\right|=500$ है, तो $f ( x )=0$ के मूलों का निरपेक्ष अंतर है $...........$
यदि ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ और $a,\;b,\;c$ गुणोत्तर श्रेणी में हैं, तो $x, y$और $z$ होंगे