यदि किसी समान्तर श्रेणी का प्रथम पद $10$ व अन्तिम पद $50$ है तथा सभी पदों का योग $300$ हो, तो पदों की संख्या है

  • A

    $5$

  • B

    $8$

  • C

    $10$

  • D

    $15$

Similar Questions

यदि ${a_1} = {a_2} = 2,\;{a_n} = {a_{n - 1}} - 1\;(n > 2)$, तब ${a_5}$ है

यदि $n$ प्राकृत संख्या है और श्रेणी $n+2 n+3 n+\cdots+99 n$ का मान एक पूर्ण वर्ग है, तो ऐसे लघुत्तम $n$ के वर्ग, अर्थात $n^2$ में अंको की संख्या होगी :

  • [KVPY 2015]

माना कि $l_1, l_2, \ldots, l_{100}$ सार्वअंतर (common difference) $d_1$ वाली एक समांतर श्रेढ़ी (arithmetic progression) के क्रमागत पद (consecutive terms) हैं, एवं माना कि $w_1, w_2, \ldots, w_{100}$ सार्वअंतर (common difference) $d_2$ वाली एक दूसरी समांतर श्रेढ़ी (arithmetic progression) के क्रमागत पद है जहाँ $d_1 d_2=10$ है। प्रत्येक $i=1$, $2, \ldots, 100$ के लिए, माना कि $R_i$ एक आयत (rectangle) है जिसकी लम्बाई $l_i$, चौड़ाई $w_i$ एवं क्षेत्रफल $A_i$ है। यदि $A_{51}-A_{50}=1000$ है तब $A_{100}-A_{90}$ का मान . . . . . .है।

  • [IIT 2022]

यदि $m$ समान्तर श्रेणियों के $n$ पदों के योग क्रमश: ${S_1},\;{S_2},\;{S_3},$……${S_m}$ हैं और इनके प्रथम पद $1,\;2,\;3,$…..$,m$ और सार्वअन्तर क्रमश: $1,\;3,\;5,$……$2m - 1$ हों, तो ${S_1} + {S_2} + {S_3} + ....... + {S_m}$ का मान है

एक व्यक्ति ऋण का भुगतान $100$ रुपये की प्रथम किश्त से शुरू करता है। यदि वह प्रत्येक किश्त में $5$ रुपये प्रति माह बढ़ता है तो $30$ वीं किश्त की राशि क्या होगी ?