વિધેય $f(x) = - 4{e^{\left( {\frac{{1 - x}}{2}} \right)}} + 1 + x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3}$ અને $g(x)=f^{-1}(x) \,;$ હોય તો $g'(-\frac{7}{6})$ મેળવો.
$\frac{1}{5}$
$- \frac{1}{5}$
$\frac{6}{7}$
$ -\frac{6}{7}$
$a =-2$ અને $b = 2$ હોય, તો વિધેય $y=x^{2}+2$ માટે રોલનું પ્રમેય ચકાસો.
વક્ર $y=x^5-20 x^3+50 x+2$ એ $x$-અક્ષને કેટલી વાર ક્રોસ કરશે. ?
દ્રીઘાત સમીકરણ ${\text{ a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0 }}$ સ્વીકારો જ્યાં, $2a\,\, + \,\,3b\,\, + \,\,6c\,\, = \,\,0$ અને ${\text{g(x)}}\,\, = \,\,{\text{a}}\,\,\frac{{{{\text{x}}^{\text{3}}}}}{3}\,\, + \,\,{\text{b}}\,\frac{{{{\text{x}}^{\text{2}}}}}{{\text{2}}}\,\, + \,\,{\text{cx}}$ લો.
વિધાન $- 1 : (0, 1)$ અંતરાલમાં દ્વિઘાત સમીકરણના ઓછામાં ઓછું એક બીજ છે.
વિધાન $- 2 : [0, 1]$ અંતરાલમાં વિધેય $g(x)$ માટે રોલનો પ્રમેય લાગુ પાડી શકાય.
અંતરાલ $[1, a]$ પર વિધેય $f(x) = 2x^2 + 3x + 5$ એ $x = 3$ આગળ મધ્યકમાન પ્રમેયનું પાલન કરે છે તો $a$ ની કિમંત મેળવો.
વિધેય ${{{x^2} - 3x} \over {x - 1}}$ એ . . . અંતરાલ માટે રોલ ના પ્રમેયની શરતો નું પાલન કરે છે .