જો વિધેય $f(x) =2x^3 + bx^2 + cx, x \in [-1, 1],$ એ બિંદુ $x = \frac {1}{2}$ આગળ રોલના પ્રમેયનું પાલન કરે તો $2b+ c=$
$-3$
$-1$
$2$
$1$
જો $f:[-5,5] \rightarrow \mathrm{R}$ વિકલનીય વિધેય હોય અને $f^{\prime}(x)$ ક્યાંય શૂન્ય ના બને તો સાબિત કરો કે $f(-5) \neq f(5).$
દ્રીઘાત સમીકરણ ${\text{ a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0 }}$ સ્વીકારો જ્યાં, $2a\,\, + \,\,3b\,\, + \,\,6c\,\, = \,\,0$ અને ${\text{g(x)}}\,\, = \,\,{\text{a}}\,\,\frac{{{{\text{x}}^{\text{3}}}}}{3}\,\, + \,\,{\text{b}}\,\frac{{{{\text{x}}^{\text{2}}}}}{{\text{2}}}\,\, + \,\,{\text{cx}}$ લો.
વિધાન $- 1 : (0, 1)$ અંતરાલમાં દ્વિઘાત સમીકરણના ઓછામાં ઓછું એક બીજ છે.
વિધાન $- 2 : [0, 1]$ અંતરાલમાં વિધેય $g(x)$ માટે રોલનો પ્રમેય લાગુ પાડી શકાય.
$x \in[-4,2]$ માં વિધેય $f(x)=x^{2}+2 x-8$ માટે રોલનું પ્રમેય ચકાસો.
$a =-2$ અને $b = 2$ હોય, તો વિધેય $y=x^{2}+2$ માટે રોલનું પ્રમેય ચકાસો.
$f(x)$ એ $[1,2]$ પર સતત અને $(1,2)$ પર વિકલનીય આપેલ છે જે $f(1) = 2, f(2) = 3$ અને $f'(x) \geq 1 \forall x \in (1,2)$ નું પાલન કરે છે અને $g(x)=\int\limits_1^x {f(t)\,dt\,\forall \,x\, \in [1,2]} $ દ્વારા વ્યાખ્યાયિત છે તો $[1,2]$ પર $g(x)$ ની મહતમ કિમંત મેળવો.