1.Relation and Function
normal

જો વિધેય $f : R \to R$ માટે $f(x) = log_a(x + \sqrt {x^2 +1} ), (a > 0, a \neq 1)$ હોય તો $f^{-1}(x)$ = 

A

$\left( {\frac{{{a^x} + {a^{ - x}}}}{2}} \right)$

B

$\left( {\frac{{{a^x} - {a^{ - x}}}}{2}} \right)$

C

$\forall x \in R$ માટે શક્ય નથી

D

માત્ર $x \in R^+$ માટે શક્ય છે

Solution

$f(x)=\log _{a}\left(x+\sqrt{x^{2}+1}\right)$

let $f(x)=y$

$x=F^{-1}(y)$

$y=\log _{a}\left(x+\sqrt{x^{2}+1}\right)$

$2+\sqrt{x^{2}+1}=a^{y}$

$\left(x-a^{y}\right)^{2}=x^{2}+1$

$x^{2}+a^{2 y}-2 x a^{y}=x^{2}+1$

$a^{2 y}-1=2 x a^{y}$

$x=\frac{a^{2 y}-1}{2 a y}$

$f^{-1}(y)=\frac{a^{2 y}-1}{2 a^{y}}$

$f^{-1}(x)=\frac{a^{2 x}-1}{2 a^{x}}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.