જો વિધેય $f : R \to R$ માટે $f(x) = log_a(x + \sqrt {x^2 +1} ), (a > 0, a \neq 1)$ હોય તો $f^{-1}(x)$ =
$\left( {\frac{{{a^x} + {a^{ - x}}}}{2}} \right)$
$\left( {\frac{{{a^x} - {a^{ - x}}}}{2}} \right)$
$\forall x \in R$ માટે શક્ય નથી
માત્ર $x \in R^+$ માટે શક્ય છે
વિધેય $y = 2x - 3$ નું વ્યસ્ત વિધેય મેળવો.
જો વિધેય $f:[1,\;\infty ) \to [1,\;\infty )$ એ $f(x) = {2^{x(x - 1)}}$ રીતે વ્યખ્યાયિત હોય તો ${f^{ - 1}} (x)$ મેળવો.
જો $f : R \rightarrow R\ f(x) = x^3 -3x^2 + 3x\ -2$ હોય તો $f^{-1}(x)$ ....... હોય.
ધારો કે $S =\{1,2,3\} .$ નીચે આપેલ વિધેય $f: S \rightarrow S$ નો વ્યસ્ત મળશે કે નહિ તે નક્કી કરો અને જો $f^{-1}$ નું અસ્તિત્વ હોય તો તે શોધો. $f^{-1}=\{(1,3),(3,2),(2,1)\}=f$
વિધેય $\frac{{{{10}^x} - {{10}^{ - x}}}}{{{{10}^x} + {{10}^{ - x}}}}$ નું વ્યસ્ત વિધેય મેળવો.