આપેલ પૈકી . . . . વિધેયનું વ્યસ્ત વિધેય મળે.
$f(x) = \frac{1}{{x - 1}}$
દરેક $x$ માટે $f(x) = {x^2}$
$f(x) = {x^2}$, $x \ge 0$
$f(x) = {x^2},\;x \le 0$
પ્રાકૃતિક સંખ્યાગણ પર સંબંધ $R$ એ $\{(a, b) : a = 2b\}$ દ્વારા વ્યાખ્યાયિત હોય તો ${R^{ - 1}}$ =
જો વિધેય $f:\left[ {4,\infty } \right) \to \left[ {1,\infty } \right)$ માટે $f\left( x \right) = {5^{x\left( {x - 4} \right)}}$ હોય તો $f^{-1}(x)$ ની કિમત મેળવો.
અહી $f: R -\{3\} \rightarrow R -\{1\}$ એ $f(x)=\frac{x-2}{x-3} $ દ્વારા આપેલ છે. અને $g: R \rightarrow R$ એ $g ( x )=2 x -3$ દ્વારા આપેલ છે. તો $x$ ની બધીજ કિમતોનો સરવાળો મેળવો કે જેથી $f^{-1}( x )+ g ^{-1}( x )=\frac{13}{2}$ થાય.
વિધેય $f: R _{+} \rightarrow[-5, \infty)$, $f(x)=9 x^{2}+6 x-5$ દ્વારા વ્યાખ્યાયિત છે. સાબિત કરો કે $f$ વ્યસ્તસંપન્ન છે અને $f^{-1}(y)=\left(\frac{(\sqrt{y+6})-1}{3}\right)$
સાબિત કરો કે $f:[-1,1] \rightarrow R ,$ $f(x)=\frac{x}{(x+2)}$ દ્વારા વ્યાખ્યાયિત વિધેય એક-એક છે. વિધેય $f:[-1,1] \rightarrow,$ નો વિસ્તાર$ f(x)=\frac{x}{(x+2)}$ તો $f$ નું પ્રતિવિધેય શોધો.
સૂચન : $f$ ના વિસ્તારમાં આવેલ $y$ ને સંગત કોઈક $x \in [ - 1,1]$ માટે $y=f(x)=\frac{x}{x+2}$, એટલે કે, $x = \frac{{2y}}{{(1 - y)}}$,