यदि फलन $f(x) = a{x^3} + b{x^2} + 11x - 6$ रोले प्रमेय की शतोर्ं को अन्तराल $[1, 3]$ के लिए सन्तुष्ट करता है तथा $f'\left( {2 + \frac{1}{{\sqrt 3 }}} \right) = 0$, तब $a$ और $b$ के मान क्रमश: हैं
$1, -6$
$-2, 1$
$-1$, $\frac{1}{2}$
$-1, 6$
यदि फलन $f(x)=2 x^{3}+ a x^{2}+ b x$ के लिए अंतराल $[-1,1]$ में बिंदु $c =\frac{1}{2}$ पर रोले का प्रमेय लागू है, तो $2 a + b$ का मान है
यदि $f(x) = 2x - {x^2}$ के लिए अन्तराल $[0, 1]$ में लैगरांज प्रमेय सत्यापित है, तो $c$ का मान, जो कि $[0,\,1]$ में होगा, है
उन बिंदुओं, जहाँ वक्र $\mathrm{y}=\mathrm{x}^5-20 \mathrm{x}^3+50 \mathrm{x}+2$, $\mathrm{x}$-अक्ष को काटता है, की संख्या है____________
अंतराल $ [0, 1] $ में लैंगरेंज मध्यमान प्रमेय निम्न में से किसके लिए लागू नहीं है
माना अन्तराल $(-2,2)$ में $f$ तथा $g$ दो बार अवकलनीय समफलन इस प्रकार है कि $f\left(\frac{1}{4}\right)=0, f\left(\frac{1}{2}\right)=0, f(1)=1$ तथा $g\left(\frac{3}{4}\right)=0, g(1)=2$ है। तब अन्तराल $(-2,2)$ में $f$ (x) $g ^{\prime \prime}( x )+ f ^{\prime}( x ) g ^{\prime}( x )=0$ के हलों की न्यूनतम संख्या है।