मध्यमान प्रमेय $f(b) - f(a) = (b - a)f'(c)$ में यदि $a = 4$, $b = 9$ तथा $f(x) = \sqrt x $ हो, तो $c$  का मान है

  • A

    $8$

  • B

    $5.25$

  • C

    $4$

  • D

    $6.25$

Similar Questions

मध्यमान प्रमेय $f(b) - f(a) = (b - a)f'({x_1});$   $a < {x_1} < b$ से यदि $f(x) = \frac{1}{x}$, तो${x_1} = $

यदि $f:[-5,5] \rightarrow R$ एक संतत फलन है और यदि $f^{\prime}(x)$ किसी भी बिंदु पर शून्य नहीं होता है तो सिद्ध कीजिए कि $f(-5) \neq f(5)$

फलन $y=x^{2}+2$ के लिए रोले के प्रमेय को सत्यापित कीजिए, जब $a=-2$ तथा $b=2$ है।

फलन $f(x) = {e^x},a = 0,b = 1$ के लिए मध्यमान प्रमेय में  $c$ का मान होगा

फलन $f(x)=x^{2}+2 x-8, x \in[-4,2]$ के लिए रोले के प्रमेय को सत्यापित कीजिए।