यदि फलन $f(x)=2 x^{3}+ b x^{2}+ c x, x \in[-1,1]$ के लिए बिंदु $x=\frac{1}{2}$ पर रोले का प्रमेय लागू होता है, तो $2 b + c$ बराबर है
$-3$
$-1$
$2$
$1$
मध्यमान प्रमेय $f(b) - f(a) = (b - a)f'({x_1});$ $a < {x_1} < b$ से यदि $f(x) = \frac{1}{x}$, तो${x_1} = $
फलन$f(x) = {x^3} - 6{x^2} + ax + b$ रोले प्रमेय की सभी शर्तो को अंतराल $[1, 3]$ में सन्तुष्ट करता है तब $ a $ और $ b$ के क्रमश: मान हैं
यदि फलन $f(x)=2 x^{3}+ a x^{2}+ b x$ के लिए अंतराल $[-1,1]$ में बिंदु $c =\frac{1}{2}$ पर रोले का प्रमेय लागू है, तो $2 a + b$ का मान है
यदि $f$ तथा $g,\,[0,1]$ में अवकलनीय फलन हैं जो $f(0)=2=g(1)$, $g(0)=0$ और $f(1)=6$ को संतुष्ट करते हैं, तो किसी $c \in] 0,[1$ के लिए:
माना कोई फलन $f$ अंतराल $[0,2]$ में संतत है तथा $(0,2)$ में दो बार अवकलनीय है। यदि $f (0)=0$, $f(1)=1$ तथा $f(2)=2$, हैं, तो