જો $y = ax^3 + bx^2 + cx + d$ નો ગ્રાફ રેખા $x = k$ ને સંમિત હોય તો
$k=c$
$k = -\frac{c}{b}$
$a + \frac{c}{{2b}} + k = 0$
એક પણ નહીં
સમીકરણ $x^2 - |x| - 6 = 0$ ના વાસ્તવિક બીજનો ગુણાકાર = .......
જો $x^{2/3} - 7x^{1/3} + 10 = 0,$ તો$x = …….$
જો $\alpha$, $\beta$ ,$\gamma$ એ સમીકરણ $x^3 -x -1 = 0$ ના ઉકેલો હોય તો જે સમીકરણના ઉકેલો $\frac{1}{{\beta + \gamma }},\frac{1}{{\gamma + \alpha }},\frac{1}{{\alpha + \beta }}$ હોય તે સમીકરણ મેળવો
અહી $\alpha, \beta(\alpha>\beta)$ એ દ્રીઘાત સમીકરણ $x ^{2}- x -4=0$ ના બીજ છે. જો $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$ તો $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ ની કિમંત $......$ થાય.
જો $x$ એ વાસ્તવિક હોય તો વિધેેય $\frac{{(x - a)(x - b)}}{{(x - c)}}$ એ બધીજ વાસ્તવિક કિંમતો ધારણ કરી શકે છે જે . . . શરત આપવમાં આવે .