જો $\alpha, \beta$ એ સમીકરણ $x^2-x-1=0$ ના બીજ હોય અને $\mathrm{S}_{\mathrm{n}}=2023 \alpha^{\mathrm{n}}+2024 \beta^{\mathrm{n}}$ હોય, તો :

  • [JEE MAIN 2024]
  • A

     $2 \mathrm{~S}_{12}=\mathrm{S}_{11}+\mathrm{S}_{10}$

  • B

     $\mathrm{S}_{12}=\mathrm{S}_{11}+\mathrm{S}_{10}$

  • C

     $2 \mathrm{~S}_{11}=\mathrm{S}_{12}+\mathrm{S}_{10}$

  • D

     $\mathrm{S}_{11}=\mathrm{S}_{10}+\mathrm{S}_{12}$

Similar Questions

જો $\alpha$ અને $\beta$ એ સમીકરણ $5 x^{2}+6 x-2=0$ ના બીજો હોય અને $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ હોય તો 

  • [JEE MAIN 2020]

અહી $S=\left\{ x : x \in R \text { and }(\sqrt{3}+\sqrt{2})^{ x ^2-4}+(\sqrt{3}-\sqrt{2})^{ x ^2-4}=10\right\} \text {. }$ હોય તો  $n ( S )$ ની કિમંત મેળવો.

  • [JEE MAIN 2023]

જો $\alpha$ અને $\beta$ એ સમીકરણ $\mathrm{x}^{2}-\mathrm{x}-1=0 $ ના બીજ હોય અને $\mathrm{p}_{\mathrm{k}}=(\alpha)^{\mathrm{k}}+(\beta)^{\mathrm{k}}, \mathrm{k} \geq 1,$ તો આપેલ પૈકી ક્યૂ વિધાન સત્ય છે ?

  • [JEE MAIN 2020]

સમીકરણ $\left[ {{x^2}} \right] - 2x + 1 = 0$ ના ઉકેલોનો સરવાળો મેળવો 

(જ્યાં $[.]$ એ મહત્તમ પૂર્ણાક વિધેય છે)

જો સમીકરણ ${x^2} + \alpha x + \beta  = 0$ ના બીજો $\alpha ,\beta $ એવા મળે કે જેથી $\alpha  \ne \beta $ અને અસમતા $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ હોય તો