જો $\alpha, \beta$ એ સમીકરણ $x^2-x-1=0$ ના બીજ હોય અને $\mathrm{S}_{\mathrm{n}}=2023 \alpha^{\mathrm{n}}+2024 \beta^{\mathrm{n}}$ હોય, તો :
$2 \mathrm{~S}_{12}=\mathrm{S}_{11}+\mathrm{S}_{10}$
$\mathrm{S}_{12}=\mathrm{S}_{11}+\mathrm{S}_{10}$
$2 \mathrm{~S}_{11}=\mathrm{S}_{12}+\mathrm{S}_{10}$
$\mathrm{S}_{11}=\mathrm{S}_{10}+\mathrm{S}_{12}$
જો $S$ એ બધા $\alpha \in R$ નો ગણ છે કે જેથી $cos\,2 x + \alpha \,sin\, x = 2\alpha -7$ ને ઉકેલગણ મળે તો $S$ =
જો $(x + 1)$ એ સમીકરણ ${x^4} - (p - 3){x^3} - (3p - 5){x^2}$ $ + (2p - 7)x + 6$ નો એક અવયવ હોય તો $p = $. . . .
સમીકરણ $x|x+5|+2|x+7|-2=0$ ના વાસ્તવિક ઉકેલોની સંખ્યા ............ છે.
સમીકરણ $x^2 - 3 | x | + 2 = 0$ ના વાસ્તવિક ઉકેલોની સંખ્યા કેટલી હોય ?
જો $\alpha, \beta$ એ સમીકરણ $x^{2}+(20)^{\frac{1}{4}} x+(5)^{\frac{1}{2}}=0$ ના બીજ હોય તો $\alpha^{8}+\beta^{8}$ ની કિમંત મેળવો.