7.Binomial Theorem
hard

$\left(x \sin \alpha+a \frac{\cos \alpha}{x}\right)^{10}$ ના વિસ્તરણમાં જો અચળ પદ  $\frac{10 !}{(5 !)^{2}}$ હોય તો $' a^{\prime}$ ની  કિમંત મેળવો.

A

$2$

B

$-1$

C

$1$

D

$-2$

(JEE MAIN-2021)

Solution

$T_{r+1}={ }^{10} C_{r}(x \sin \alpha)^{10-t}\left(\frac{a \cos \alpha}{x}\right)^{r}$

$r=0,1,2, \ldots, 10$

$T_{r+1}$ will be independent of $x$

When $10-2 r=0 \Rightarrow r=5$

$T_{6}={ }^{10} C_{5}(x \sin \alpha)^{5} \times\left(\frac{a \cos \alpha}{x}\right)^{5}$

$=^{10} C_{5} \times a^{5} \times \frac{1}{2^{5}}(\sin 2 \alpha)^{5}$

will be greatest when $\sin 2 \alpha=1$

$\Rightarrow^{10} C_{5} \frac{a^{5}}{2^{5}}={ }^{10} C_{5} \Rightarrow a=2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.