જો $\left(x^{\frac{2}{3}}+\frac{\alpha}{x^3}\right)^{22}$ ના વિસ્તરણમાં $x$ વગર નું પદ $7315 $ હોય, તો $|\alpha|=...............$
$2$
$1$
$4$
$6$
$(x+a)^n$ ના વિસ્તરણમાં બીજું, ત્રીજું અને ચોથું પદ અનુક્રમે $240, 720$ અને $1080$ છે. $x, a$ અને $n$ શોધો.
જો ${(1 + x)^m}{(1 - x)^n}$ ના વિસ્તરણમાં $x$ અને ${x^2}$ ના સહગુણક અનુક્રમે $3$ અને $-6$ હોયતો $m$ મેળવો.
આપેલ સમીકરણ $(x^{1/3} - x^{-1/2})^{15}$ ના વિસ્તરણમાં જે પદમાં $x$ ન હોય તે પદ $5\, m$ જ્યાં $m \in N$, હોય તો $m $ ની કિમત મેળવો
$\sum\limits_{m = 0}^{100} {{\,^{100}}{C_m}{{(x - 3)}^{100 - m}}} {.2^m}$ ના વિસ્તરણમાં ${x^{53}}$ નો સહગુણક મેળવો.
${(\sqrt x - \sqrt y )^{17}}$ ના વિસ્તરણમાં $16^{th}$ મું પદ મેળવો.