$\left(\sqrt{x}-\frac{6}{x^{\frac{3}{2}}}\right)^n, n \leq 15$ ના દ્વિપદી વિસ્તરણમાંનો અચળ પદ ધારોકે $\alpha$ છે. જો વિસ્તરણમાં ના બાકીના પદો સહગુણકોનો સરવાળો $649$ હોય અને $x^{-n}$ નો સહગુણક $\lambda \alpha$ હોય, તો $\lambda=..........$
$35$
$34$
$36$
$33$
$\left(2 x^3-\frac{1}{3 x^2}\right)^5$ ના વિસ્તરણમાં $x^5$ નો સહગુણક $........$ હશે.
જો $1 + {x^4} + {x^5} = \sum\limits_{i = 0}^5 {{a_i}\,(1 + {x})^i,} $ બધા $x\,\in$ $R$ માં આવેલ છે તો $a_2$ ની કિમત મેળવો.
જો $(1+x)^{34}$ ના વિસ્તરણના $(r -5)$ માં પદ અને $(2 -1)$ માં પદના સહગુણકો સમાન હોય, તો $r$ શોધો.
${\left( {2{x^2} - \frac{1}{{3{x^2}}}} \right)^{10}}$ ના વિસ્તરણ ${6^{th}}$ પદ મેળવો.
$\left(\sqrt[3]{x}+\frac{1}{2 \sqrt[3]{x}}\right)^{18}$ ના વિસ્તરણનું $x$ થી સ્વતંત્ર પદ(અચળ પદ) શોધો.