If the inverse of the conditional statement $p \to \left( { \sim q\ \wedge \sim r} \right)$ is false, then the respective truth values of the statements $p, q$ and $r$ is
$FFF$
$TFT$
$TTF$
$TTT$
For integers $m$ and $n$, both greater than $1$ , consider the following three statements
$P$ : $m$ divides $n$
$Q$ : $m$ divides $n^2$
$R$ : $m$ is prime,
then true statement is
The converse of the statement "If $p < q$, then $p -x < q -x"$ is -
Negation of "If India wins the match then India will reach in the final" is :-
Which one of the following is a tautology ?
Consider the following statements :
$A$ : Rishi is a judge.
$B$ : Rishi is honest.
$C$ : Rishi is not arrogant.
The negation of the statement "if Rishi is a judge and he is not arrogant, then he is honest" is