The converse of the statement $((\sim p) \wedge q) \Rightarrow r$ is
$(\sim r ) \Rightarrow p \wedge q$
$(\sim r ) \Rightarrow((\sim p ) \wedge q )$
$((\sim p) \vee q) \Rightarrow r$
$( p \vee(\sim q )) \Rightarrow(\sim r )$
The maximum number of compound propositions, out of $p \vee r \vee s , p \vee P \vee \sim s , p \vee \sim q \vee s$,
$\sim p \vee \sim r \vee s , \sim p \vee \sim r \vee \sim s , \sim p \vee q \vee \sim s$, $q \vee r \vee \sim s , q \vee \sim r \vee \sim s , \sim p \vee \sim q \vee \sim s$
that can be made simultaneously true by an assignment of the truth values to $p , q , r$ and $s$, is equal to
The Boolean expression $ \sim \left( {p \Rightarrow \left( { \sim q} \right)} \right)$ is equivalent to
The statement $\sim(p\leftrightarrow \sim q)$ is :
$( S 1)( p \Rightarrow q ) \vee( p \wedge(\sim q ))$ is a tautology $( S 2)((\sim p ) \Rightarrow(\sim q )) \wedge((\sim p ) \vee q )$ is a Contradiction. Then
The contrapositive of the following statement, "If the side of a square doubles, then its area increases four times", is