જો ઉપવલયના નાભીલંબની લંબાઈ $4\,એકમ$ અને નાભી અને મુખ્યઅક્ષ પરના નજીકના શિરોબિંદુ વચ્ચેનું અંતર $\frac {3}{2}\,એકમ$ હોય તો ઉત્કેન્દ્ર્તા મેળવો.
$\frac {1}{2}$
$\frac {2}{3}$
$\frac {1}{9}$
$\frac {1}{3}$
અહી $S=\left\{(x, y) \in N \times N : 9(x-3)^{2}+16(y-4)^{2} \leq 144\right\}$ અને $\quad T=\left\{(x, y) \in R \times R :(x-7)^{2}+(y-4)^{2} \leq 36\right\}$ હોય તો $n ( S \cap T )$ ની કિમંત $......$ થાય.
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ નાભિઓ $(\pm 3,\,0),\,\, a=4$
ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ ની નાભિઓ અને અતિવલય
$\frac{{{x^2}}}{{144}}\,\, - \,\,\frac{{{y^2}}}{{81}}\,\, = \,\,\frac{1}{{25}}$ ની નાભીઓ સમાન હોય તો ${b^2}$ નું મૂલ્ય:
ધારો કે વક્રો $4\left(x^{2}+y^{2}\right)=9$ અને $y^{2}=4 x$ ના સામાન્ય સ્પર્શકો $Q$ બિંદુમાં છેદે છે. ધારે કે $O$ કેન્દ્રવાળા એક ઉપવલયના ગૌણ અક્ષ અને પ્રધાન અક્ષ ની અર્લંધબાઈઓ અનુક્રમે $OQ$ અને $6$ છે.જો આ ઉપવલય ઉત્કેન્દ્રતા $e$ અને નાભિલંબની લંબાઈ $l$ હોય, તો $\frac{l}{ e ^{2}}=\dots\dots\dots$
જે ઉપવલયનું કેન્દ્ર ઉગમબિંદુ આગળ હોય અને જે બિંદુઓ $(-3, 1) $ અને $ (2, -2) $ માંથી પસાર થતા ઉપવલયનું સમીકરણ $(a > b)$ .....