If the line $3x + 4y - 1 = 0$ touches the circle ${(x - 1)^2} + {(y - 2)^2} = {r^2}$, then the value of $r$ will be
$2$
$5$
$\frac{{12}}{5}$
$\frac{2}{5}$
If the lines $3x - 4y + 4 = 0$ and $6x - 8y - 7 = 0$ are tangents to a circle, then the radius of the circle is
In the given figure, $AB$ is tangent to the circle with centre $O$ , the ratio of the shaded region to the unshaded region of the triangle $OAB$ is
If the straight line $4x + 3y + \lambda = 0$ touches the circle $2({x^2} + {y^2}) = 5$, then $\lambda $ is
The equation of the tangent to the circle ${x^2} + {y^2} - 2x - 4y - 4 = 0$ which is perpendicular to $3x - 4y - 1 = 0$, is
Two tangents are drawn from a point $P$ to the circle $x^{2}+y^{2}-2 x-4 y+4=0$, such that the angle between these tangents is $\tan ^{-1}\left(\frac{12}{5}\right)$, where $\tan ^{-1}\left(\frac{12}{5}\right) \in(0, \pi)$. If the centre of the circle is denoted by $C$ and these tangents touch the circle at points $A$ and $B$, then the ratio of the areas of $\Delta PAB$ and $\Delta CAB$ is :