दीर्घवृत्त $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1$ की जीवा का समीकरण, जो कि बिन्दु $(2,1)$ से जाती है, तथा यह बिन्दु जीवा को दो बराबर बराबर भागों में विभाजित करता है, होगा
$x + y = 2$
$x + y = 3$
$x + 2y = 1$
$x + 2y + 4$
दीर्घवृत (ellipse) $\frac{x^2}{9}+\frac{y^2}{4}=1$ पर विचार कीजिये। माना कि $S(p, q)$ प्रथम चतुर्थांश (first quadrant) में एक इस प्रकार का बिंदु है कि $\frac{p^2}{9}+\frac{q^2}{4}>1$ है । बिंदु $S$ से दीर्घवृत के लिए दो स्पर्श रेखाएं (tangents) खींची गयी हैं, जिनमें से एक रेखा, दीर्घवृत पर लघु अक्ष (minor axis) के एक अंत्य बिंदु (end point) पर मिलती है तथा दूसरी रेखा चौथे चतुर्थांश (fourth quadrant) में दीर्घवृत के एक बिंदु $T$ पर मिलती है। माना कि $R$ दीर्घवृत का वह शीर्ष (vertex) है जिसका $x$-निर्देशांक ( $x$-coordinate) धनात्मक (positive) है, और दीर्घवृत का केंद्र $O$ है। यदि त्रिभुज $\triangle O R T$ का क्षेत्रफल $\frac{3}{2}$ है, तब निम्नलिखित विकल्पों में से कौन सा सही है?
दीर्घवृत्त $3 x ^{2}+5 y ^{2}=32$ के बिन्दु $P (2,2)$ पर खींची गई स्पर्श रेखा तथा अभिलंब, $x$-अक्ष को क्रमशः $Q$ तथा $R$ पर काटते है। तो त्रिभुज $PQR$ का क्षेत्रफल (वर्ग इकाइयों में) हैं
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के बिन्दु $(a\cos \theta ,\;b\sin \theta )$ पर अभिलम्ब का समीकरण होगा
बिन्दु $(4, -3)$ की दीर्घवृत्त $4{x^2} + 5{y^2} = 1$ के सापेक्ष स्थिति है
एक दीर्घवृत्त की उत्केन्द्रता $\frac{1}{2}$ और एक नाभि बिन्दु $P\left( {\frac{1}{2},\;1} \right)$ है। इसकी एक नियता वृत्त ${x^2} + {y^2} = 1$ और अतिपरवलय ${x^2} - {y^2} = 1$ की बिन्दु $P$ के निकट स्थित उभयनिष्ठ स्पर्श रेखा है। दीर्घवृत्त का मानक रूप में समीकरण होगा