- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
If the lines $x -2y = 12$ is tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ at the point $\left( {3,\frac{-9}{2}} \right)$, then the length of the latus rectum of the ellipse is
A
$12\sqrt 2$
B
$9$
C
$8\sqrt 3$
D
$5$
(JEE MAIN-2019)
Solution
Tangent at $\left( {3,\frac{{ – 9}}{2}} \right)$
$\frac{{3x}}{{{a^2}}} – \frac{{9y}}{{2{b^2}}} = 1$
Comparing with $x – 2y = 12$
$\frac{3}{{{a^2}}} – \frac{9}{{4{b^2}}} = \frac{1}{{12}}$
$ \Rightarrow a = 6$ and $b = 3\sqrt 3 $
Length of latus rectum $ = \frac{{2{b^2}}}{a} = 9$
Standard 11
Mathematics