If the lines $x -2y = 12$ is tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ at the point $\left( {3,\frac{-9}{2}} \right)$, then the length of the latus rectum of the ellipse is
$12\sqrt 2$
$9$
$8\sqrt 3$
$5$
The equation of the tangents drawn at the ends of the major axis of the ellipse $9{x^2} + 5{y^2} - 30y = 0$, are
If $ \tan\ \theta _1. tan \theta _2 $ $= -\frac{{{a^2}}}{{{b^2}}}$ then the chord joining two points $\theta _1 \& \theta _2$ on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $= 1$ will subtend a right angle at :
The pole of the straight line $x + 4y = 4$ with respect to ellipse ${x^2} + 4{y^2} = 4$ is
If the tangent to the parabola $y^2 = x$ at a point $\left( {\alpha ,\beta } \right)\,,\,\left( {\beta > 0} \right)$ is also a tangent to the ellipse, $x^2 + 2y^2 = 1$, then $a$ is equal to
An ellipse and a hyperbola have the same centre origin, the same foci and the minor-axis of the one is the same as the conjugate axis of the other. If $ e_1, e_2 $ be their eccentricities respectively, then $e_1^{ - 2} + e_2^{ - 2}$ equals