यदि दीर्घवत्त $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ तथा वत्त $x^{2}+y^{2}=4 b$, $b >4$ के प्रतिच्छेदन बिन्दु वक्र $y ^{2}=3 x ^{2}$ पर स्थित हैं, तो $b$ बराबर है

  • [JEE MAIN 2021]
  • A

    $12$

  • B

    $5$

  • C

    $6$

  • D

    $10$

Similar Questions

दीर्घवृत्त $4{x^2} + 9{y^2} = 36$ के बिन्दु $(3, -2)$  पर स्पर्श रेखा तथा अभिलम्ब के समीकरण क्रमश: हैं  

समीकरण  $\frac{{{x^2}}}{{2 - r}} + \frac{{{y^2}}}{{r - 5}} + 1 = 0$ दीर्घवृत्त को प्रदर्शित करेगा यदि   

दीर्घवृत्त के नाभियों के बीच की दूरी 16 तथा उत्केन्द्रता $\frac{1}{2}$ है। दीर्घवृत्त के दीर्घाक्ष की लम्बाई है

यदि सरल रेखा $y = mx + c$, दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ की स्पर्श रेखा हो, तो $c$ का मान होगा

यदि दीर्घवृत्त $x^2+4 y^2=36$ के अंतर्गत, केन्द्र $(2,0)$ के सबसे बड़े वृत्त की त्रिज्या $\mathrm{r}$ है, तो $12 \mathrm{r}^2$ बराबर है -

  • [JEE MAIN 2023]