दीर्घवृत्त $\frac{{{x^2}}}{{27}} + {y^2} = 1$ के बिन्दु $(3\sqrt 3 \cos \theta ,\;\sin \theta )$ पर स्पर्श खींची गयी है। ( जहाँ $\theta \in (0,\;\pi /2)$ तब $\theta $ के किस मान के लिए स्पर्श द्वारा अक्षों पर काटे गये अंत:खण्डो का योग न्यूनतम होगा
$\pi /3$
$\pi /6$
$\pi /8$
$\pi /4$
दीर्घवृत्त $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ के नाभिलम्बों के सिरों पर खींची गई स्पर्श रेखाओं द्वारा निर्मित चतुर्भुज का क्षेत्रफल (वर्ग इकाइयों में) है
शांकव $16{x^2} + 7{y^2} = 112$ की उत्केन्द्रता है
उस दीर्घवृत्त का समीकरण, जिसकी एक नाभि $(4,0)$ है एवं उत्केन्द्रता $\frac{4}{5}$ है, होगा
माना दीर्घवृत्त $9 x^2+4 y^2=36$ पर चार बिंदु $\mathrm{P}\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), \mathrm{Q}, \mathrm{R}$ तथा $\mathrm{S}$ हैं। माना रेखाखंड $\mathrm{PQ}$ तथा $\mathrm{RS}$ परस्पर लंबवत है तथा मूलबिंदु से होकर जाते हैं। यदि $\frac{1}{(\mathrm{PQ})^2}+\frac{1}{(\mathrm{RS})^2}=\frac{\mathrm{p}}{\mathrm{q}}$, जहाँ $\mathrm{p}$ तथा $q$ असहभाज्य है, तो $\mathrm{p}+\mathrm{q}$ बराबर है :
बिंदु $(1,3)$ से दीर्घवृत्त $2 x^2+3 y^2=5$ पर डाली गई दो स्पर्श रेखाओं के बीच न्यून कोण है :