यदि $2 \hat{ i }+4 \hat{ j }-2 \hat{ k }$ का प्रक्षेप्य, $\hat{ i }+2 \hat{ j }+\alpha \hat{ k }$ पर शून्य है, तो $\alpha$ का मान होगा $............$।
$2$
$3$
$5$
$4$
माना $\mathop A\limits^ \to = \hat iA\,\cos \theta + \hat jA\,\sin \theta $ कोई सदिश है। सदिश $\mathop A\limits^ \to $ के लम्बवत् सदिश $\mathop B\limits^ \to $ होगा
बिन्दुओंं $A, B, C$ तथा $D$ के स्थिति सदिश क्रमश: $A = 3\hat i + 4\hat j + 5\hat k,\,\,B = 4\hat i + 5\hat j + 6\hat k,\,\,C = 7\hat i + 9\hat j + 3\hat k$ तथा $D = 4\hat i + 6\hat j$ हैं तो विस्थापन सदिश $AB$ तथा $CD$ हैं
$\overrightarrow{ A } \times 0$ का परिणाम होगा
उस समान्तर चतुभुज का क्षेत्रफल क्या होगा जिसकी भुजायें सदिश $\hat j + 3\hat k$ तथा $\hat i + 2\hat j - \hat k$ से प्रदर्शित हैं