दिखाइए कि $(1+x)^{2 n}$ के प्रसार में मध्य पद का गुणांक, $(1+x)^{2 n-1}$ के प्रसार में दोनों मध्य पदों के गुणांकों के योग के बराबर होता है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

As $2 n$ is even so the expansion $(1+x)^{2 n}$ has only one middle term which is
$\left(\frac{2 n}{2}+1\right)^{\text {th }}$ i.e., $(n+1)^{\text {th }}$ term.

The $(n+1)^{\text {th }}$ term is $^{2 n} C_{n} x^{n}$. The coefficient of $x^{n}$ is $^{2 n} C_{n}$

Similarly, $(2 n-1)$ being odd, the other expansion has two middle terms,

$\left(\frac{2 n-1+1}{2}\right)^{ th }$ and $\left(\frac{2 n-1+1}{2}+1\right)^{ th }$ i.e., $n^{ th }$ and $(n+1)^{ th }$ terms. The coefficients of  these terms are $^{2n - 1}{C_{n - 1}}$ and $^{2n - 1}{C_n},$ respectively.

$^{2n - 1}{C_{n - 1}} + {\,^{2n - 1}}{C_n} = {\,^{2n}}{C_n}$      [ As ${^n{C_{r - 1}} + {\,^n}{C_r} = {\,^{n + 1}}{C_r}}$ ] as required.

Similar Questions

${(1 + x)^{10}}$ के विस्तार में मध्य पद का गुणांक होगा

${\left( {\frac{a}{x} + bx} \right)^{12}}$ के विस्तार में $x^{-10}$ का गुणांक होगा

यदि $(2+a)^{50}$ के द्विपद प्रसार का सत्रहवाँ और अट्ठारहवाँ पद समान हो तो $a$ का मान ज्ञात कीजिए।

यदि $\left(x+x^{\log _{2} x}\right)^{7}$ के प्रसार में चौथा पद $4480$ है, तो $x ( x \in N )$ का मान है

  • [JEE MAIN 2021]

$\left(x-\frac{3}{x^{2}}\right)^{m}, x \neq 0,$ जहाँ $m$ एक प्राकृत संख्या है, के प्रसार में पहले तीन पदों के गुणांकों का योग $559$ है। प्रसार में $x^{3}$ वाला पद ज्ञात कीजिए।