If the roots of the equation $8{x^3} - 14{x^2} + 7x - 1 = 0$ are in $G.P.$, then the roots are
$1,\frac{1}{2},\frac{1}{4}$
$2, 4, 8$
$3, 6, 12$
None of these
The number of solutions of $\sin ^2 \mathrm{x}+\left(2+2 \mathrm{x}-\mathrm{x}^2\right) \sin \mathrm{x}-3(\mathrm{x}-1)^2=0$, where $-\pi \leq \mathrm{x} \leq \pi$, is....................
Let $a$ be the largest real root and $b$ be the smallest real root of the polynomial equation $x^6-6 x^5+15 x^4-20 x^3+15 x^2-6 x+1=0$ Then $\frac{a^2+b^2}{a+b+1}$ is
Let $\alpha$ and $\beta$ be the roots of the equation $5 x^{2}+6 x-2=0 .$ If $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ then :
If $(x + 1)$ is a factor of ${x^4} - (p - 3){x^3} - (3p - 5){x^2}$ $ + (2p - 7)x + 6$, then $p = $
For a real number $x$, let $[x]$ denote the largest integer less than or equal to $x$, and let $\{x\}=x-[x]$. The number of solutions $x$ to the equation $[x]\{x\}=5$ with $0 \leq x \leq 2015$ is