समीकरण $x^5\left(x^3-x^2-x+1\right)+x\left(3 x^3-4 x^2-2 x+4\right)-1$ $=0$ के भिन्न वास्तविक मूलों की संख्या है $.........$

  • [JEE MAIN 2022]
  • A

    $8$

  • B

    $3$

  • C

    $5$

  • D

    $0$

Similar Questions

समीकरण ${x^2} + 5|x| + \,\,4 = 0$ के वास्तविक हल होंगे

माना कि $f(x)=x^4+a x^3+b x^2+c$ वास्तविक गुणांकों (real coefficients ) वाला एक ऐसा बहुपद (polynomial) है कि $f(1)=-9$ है। मान लीजिये कि $i \sqrt{3}$, समीकरण $4 x^3+3 a x^2+2 b x=0$ का एक मूल है, जहां $i=\sqrt{-1}$ है। यदि $\alpha_1, \alpha_2, \alpha_3$, और $\alpha_4$, समीकरण $f(x)=0$ के सभी मूल हैं, तब $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ का मान. . . . . है।

  • [IIT 2024]

यदि $p$ तथा $q$ दो वास्तविक संख्याऐं इस प्रकार है, कि $p + q =3$ तथा $p ^4+ q ^4=369$ है, तो $\left(\frac{1}{ p }+\frac{1}{ q }\right)^{-2}$ का मान होगा-

  • [JEE MAIN 2022]

निम्नलिखित गुणों वाली एक तीन अंकों वाली संख्या पर विचार करे :

$I$. यदि इसके इकाई $(unit)$ और दहाई $(tens)$ अंकों को आपस में बदल दिया जाए तब संख्या $36$ से बढ़ जाएगी;

$II$. यदि इसके इकाई और सीवें $(hundredth)$ अंकों को बदल दिया जाए तो संख्या $198$ से घट जाएगी;

अब मान ले कि दहाई अंक तथा सौवें अंक को आपस में अदल - बदल दिया जाए, तो संख्या

  • [KVPY 2017]

समीकरण $\left(e^{2 x}-4\right)\left(6 e^{2 x}-5 e^x+1\right)=0$के सभी वास्तविक मूलों का योगफल होगा

  • [JEE MAIN 2022]