यदि किसी समान्तर श्रेणी के $n$ पदों का योगफल $nA + {n^2}B$, जहाँ $A,B$ नियतांक हैं, है। तो इनका सार्वअन्तर होगा

  • A

    $A - B$

  • B

    $A + B$

  • C

    $2A$

  • D

    $2B$

Similar Questions

श्रेणियों $3+7+11+15+\ldots$ तथा $1+6+11+16+\ldots \ldots$, के बीच उभयनिष्ठ प्रथम $20$ पदों का योग है

  • [JEE MAIN 2014]

माना $a , b$ दो शून्येत्तर वास्तविक संख्याएँ हैं। एक समीकरण $x^2-8 a x+2 a=0$ के मूल $p$ तथा $r$ हैं और समीकरण $x ^2+12 bx +6 b =0$, के मूल $q$ तथा $s$ हैं, इस प्रकार कि $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ A.P. में हैं,तो $a^{-1}-b^{-1}$ बराबर है $................$

  • [JEE MAIN 2022]

यदि $a, b, c, d$ गुणोत्तर श्रेणी में हैं, तो सिद्ध कीजिए कि $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ गुणोत्तर श्रेणी में हैं।

यदि $4$ पदों वाली एक समान्तर श्रेणी के प्रथम व अन्तिम पदों का योग $8$ एवं शेष दो बीच वाली संख्याओं का गुणनफल $15$ हो, तो श्रेणी की सबसे बड़ी संख्या होगी

यदि $x^{2}-3 x+p=0$ के मूल $a$ तथा $b$ हैं तथा $x^{2}-12 x+q=0,$ के मूल $c$ तथा $d$ हैं, जहाँ $a, b, c, d$ गुणोत्तर श्रेणी के रूप में हैं। सिद्ध कीजिए कि $(q+p):(q-p)=17: 15$