જો સમીકરણ $\cos p\theta + \cos q\theta = 0,\;p > 0,\;q > 0$ ની $\theta $ ના ઉકેલગણ સમાંતર શ્રેણીમાં હોય તો સમાંતર શ્રેણીનો ન્યુનતમ સમાન્ય તફાવત મેળવો.
$\frac{\pi }{{p + q}}$
$\frac{{2\pi }}{{p + q}}$
$\frac{\pi }{{2(p + q)}}$
$\frac{1}{{p + q}}$
જો $\cos p\theta = \cos q\theta ,p \ne q$, તો
સમીકરણ $\sin x - 3\sin 2x + \sin 3x = $ $\cos x - 3\cos 2x + \cos 3x$ નો વ્યાપક ઉકેલ મેળવો.
ધારો કે $S=\left\{\theta \in[-\pi, \pi]-\left\{\pm \frac{\pi}{2}\right\}: \sin \theta \tan \theta+\tan \theta=\sin 2 \theta\right\} \text {}$. જો $T =\sum_{\theta \in S } \cos 2 \theta$ હોય. તો $T + n ( S )$ = ...............
$‘a’$ ની .............. કિમતો માટે $cos\, 2x + a\, sin\, x = 2a - 7$ ના ઉકેલો શક્ય છે
જો $r\,\sin \theta = 3,r = 4(1 + \sin \theta ),\,\,0 \le \theta \le 2\pi ,$ તો $\theta = $