यदि किसी समांतर श्रेणी के $n$ पदों का योग $n P +\frac{1}{2} n(n-1) Q$, है, जहाँ $P$ तथा $Q$ अचर हो तो सार्व अंतर ज्ञात कीजिए।
Let $a_{1}, a_{2}, \ldots a_{n}$ be the given $\mathrm{A.P.}$ Then
${S_n} = {a_1} + {a_2} + {a_3} + \ldots + {a_{n - 1}} + {a_n} = nP + \frac{1}{2}n(n - 1)Q$
Therefore $S_{1}=a_{1}=P, S_{2}=a_{1}+a_{2}=2 P+Q$
So that $a_{2}= S _{2}- S _{1}= P + Q$
Hence, the common difference is given by $d=a_{2}-a_{1}=(P+Q)-P=Q$
समान्तर श्रेढ़ी $b _{1}, b _{2}, \ldots, b _{ m }$ का सार्वअन्तर, समान्तर श्रेढ़ी $a _{1}, a _{2}, \ldots, a _{ n }$ के सार्वअन्तर से $2$ अधिक है यदि $a _{40}=- 159$, $a _{100}=-399$ तथा $b _{100}= a _{70}$, तो $b _{1}$ बराबर है
दो समान्तर श्रेणियों के $n$ पदों के योग का अनुपात $2n + 3:6n + 5$ है, तो इनके $13$ वें पदों का अनुपात होगा
यदि $a$ और $b$के बीच का समान्तर माध्य $\frac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$है, तो $n$ का मान होगा
$m$ संख्याओं को $1$ तथा $31$ के रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी है और $7$ वीं एव $(m-1)$ वीं संख्याओं का अनुपात $5: 9$ है। तो $m$ का मान ज्ञात कीजिए।
किसी समांतर श्रेणी में प्रथम पद $2$ है तथा प्रथम पाँच पदों का योगफल, अगले पाँच पदों के योगफल का एक चौथाई है। दर्शाइए कि $20$ वाँ पद $-112$ है।