If the sum of $n$ terms of an $A.P.$ is $3 n^{2}+5 n$ and its $m^{\text {th }}$ term is $164,$ find the value of $m$
Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively.
$a_{m}=a+(m-1) d=164$ ............$(1)$
Sum of $n$ terms: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Here,
$\frac{n}{2}[2 a+n d-d]=3 n^{2}+5 n$
$\Rightarrow n a+n^{2} \cdot \frac{d}{2}-\frac{n d}{2}=3 n^{2}+5 n$
Comparing the coefficient of $n^{2}$ on both sides, we obtain
$\frac{d}{2}=3$
$\Rightarrow d=6$
Comparing the coefficient of $n$ on both sides, we obtain
$a-\frac{d}{2}=5$
$\Rightarrow a-3=5$
$\Rightarrow a=8$
Therefore, from $(1),$ we obtain
$8+(m-1) 6=164$
$\Rightarrow(m-1) 6=164-8=156$
$\Rightarrow m-1=26$
$\Rightarrow m=27$
Thus, the value of $m$ is $27 .$
The $A.M.$ of a $50$ set of numbers is $38$. If two numbers of the set, namely $55$ and $45$ are discarded, the $A.M.$ of the remaining set of numbers is
If $n$ arithmetic means are inserted between a and $100$ such that the ratio of the first mean to the last mean is $1: 7$ and $a+n=33$, then the value of $n$ is
Find the $9^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=(-1)^{n-1} n^{3}$
If $\log _{10} 2, \log _{10} (2^x + 1), \log _{10} (2^x + 3)$ are in $A.P.,$ then :-
If the sum of three consecutive terms of an $A.P.$ is $51$ and the product of last and first term is $273$, then the numbers are