If the sum of $n$ terms of an $A.P.$ is $3 n^{2}+5 n$ and its $m^{\text {th }}$ term is $164,$ find the value of $m$
Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively.
$a_{m}=a+(m-1) d=164$ ............$(1)$
Sum of $n$ terms: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Here,
$\frac{n}{2}[2 a+n d-d]=3 n^{2}+5 n$
$\Rightarrow n a+n^{2} \cdot \frac{d}{2}-\frac{n d}{2}=3 n^{2}+5 n$
Comparing the coefficient of $n^{2}$ on both sides, we obtain
$\frac{d}{2}=3$
$\Rightarrow d=6$
Comparing the coefficient of $n$ on both sides, we obtain
$a-\frac{d}{2}=5$
$\Rightarrow a-3=5$
$\Rightarrow a=8$
Therefore, from $(1),$ we obtain
$8+(m-1) 6=164$
$\Rightarrow(m-1) 6=164-8=156$
$\Rightarrow m-1=26$
$\Rightarrow m=27$
Thus, the value of $m$ is $27 .$
Let ${T_r}$ be the ${r^{th}}$ term of an $A.P.$ for $r = 1,\;2,\;3,....$. If for some positive integers $m,\;n$ we have ${T_m} = \frac{1}{n}$ and ${T_n} = \frac{1}{m}$, then ${T_{mn}}$ equals
If $p,\;q,\;r$ are in $A.P.$ and are positive, the roots of the quadratic equation $p{x^2} + qx + r = 0$ are all real for
Given that $n$ A.M.'s are inserted between two sets of numbers $a,\;2b$and $2a,\;b$, where $a,\;b \in R$. Suppose further that ${m^{th}}$ mean between these sets of numbers is same, then the ratio $a:b$ equals
If the $A.M.$ between $p^{th}$ and $q^{th}$ terms of an $A.P.$ is equal to the $A.M.$ between $r^{th}$ and $s^{th}$ terms of the same $A.P.$, then $p + q$ is equal to
Let ${S_n}$ denotes the sum of $n$ terms of an $A.P.$ If ${S_{2n}} = 3{S_n}$, then ratio $\frac{{{S_{3n}}}}{{{S_n}}} = $