If the sum of $n$ terms of an $A.P.$ is $3 n^{2}+5 n$ and its $m^{\text {th }}$ term is $164,$ find the value of $m$
Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively.
$a_{m}=a+(m-1) d=164$ ............$(1)$
Sum of $n$ terms: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Here,
$\frac{n}{2}[2 a+n d-d]=3 n^{2}+5 n$
$\Rightarrow n a+n^{2} \cdot \frac{d}{2}-\frac{n d}{2}=3 n^{2}+5 n$
Comparing the coefficient of $n^{2}$ on both sides, we obtain
$\frac{d}{2}=3$
$\Rightarrow d=6$
Comparing the coefficient of $n$ on both sides, we obtain
$a-\frac{d}{2}=5$
$\Rightarrow a-3=5$
$\Rightarrow a=8$
Therefore, from $(1),$ we obtain
$8+(m-1) 6=164$
$\Rightarrow(m-1) 6=164-8=156$
$\Rightarrow m-1=26$
$\Rightarrow m=27$
Thus, the value of $m$ is $27 .$
Which term of the sequence $( - 8 + 18i),\,( - 6 + 15i),$ $( - 4 + 12i)$ $,......$ is purely imaginary
A man starts repaying a loan as first instalment of $Rs.$ $100 .$ If he increases the instalment by $Rs \,5$ every month, what amount he will pay in the $30^{\text {th }}$ instalment?
The sum of the first and third term of an arithmetic progression is $12$ and the product of first and second term is $24$, then first term is
Insert $6$ numbers between $3$ and $24$ such that the resulting sequence is an $A.P.$
Let the sequence ${a_1},{a_2},{a_3},.............{a_{2n}}$ form an $A.P. $ Then $a_1^2 - a_2^2 + a_3^3 - ......... + a_{2n - 1}^2 - a_{2n}^2 = $