If the sum of $n$ terms of an $A.P.$ is $3 n^{2}+5 n$ and its $m^{\text {th }}$ term is $164,$ find the value of $m$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively. 

$a_{m}=a+(m-1) d=164$        ............$(1)$

Sum of $n$ terms: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$

Here,

$\frac{n}{2}[2 a+n d-d]=3 n^{2}+5 n$

$\Rightarrow n a+n^{2} \cdot \frac{d}{2}-\frac{n d}{2}=3 n^{2}+5 n$

Comparing the coefficient of $n^{2}$ on both sides, we obtain

$\frac{d}{2}=3$

$\Rightarrow d=6$

Comparing the coefficient of $n$ on both sides, we obtain

$a-\frac{d}{2}=5$

$\Rightarrow a-3=5$

$\Rightarrow a=8$

Therefore, from $(1),$ we obtain

$8+(m-1) 6=164$

$\Rightarrow(m-1) 6=164-8=156$

$\Rightarrow m-1=26$

$\Rightarrow m=27$

Thus, the value of $m$ is $27 .$

Similar Questions

The sum of the series $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + ........$ to $9$ terms is

Find the sum of all two digit numbers which when divided by $4,$ yields $1$ as remainder.

Let ${S_n}$ denotes the sum of $n$ terms of an $A.P.$ If ${S_{2n}} = 3{S_n}$, then ratio $\frac{{{S_{3n}}}}{{{S_n}}} = $

Let the coefficients of the middle terms in the expansion of $\left(\frac{1}{\sqrt{6}}+\beta x\right)^{4},(1-3 \beta x)^{2}$ and $\left(1-\frac{\beta}{2} x\right)^{6}, \beta>0$, respectively form the first three terms of an $A.P.$ If $d$ is the common difference of this $A.P.$, then $50-\frac{2 d}{\beta^{2}}$ is equal to.

  • [JEE MAIN 2022]

The sum of all the elements of the set $\{\alpha \in\{1,2, \ldots, 100\}: \operatorname{HCF}(\alpha, 24)=1\}$ is

  • [JEE MAIN 2022]