એક સમાંતર શ્રેણીનાં $n$ પદોનો સરવાળો $3 n^{2}+5 n$ અને $m$ મું પદ $164$ છે, તો $m$ નું મૂલ્ય શોધો.
Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively.
$a_{m}=a+(m-1) d=164$ ............$(1)$
Sum of $n$ terms: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Here,
$\frac{n}{2}[2 a+n d-d]=3 n^{2}+5 n$
$\Rightarrow n a+n^{2} \cdot \frac{d}{2}-\frac{n d}{2}=3 n^{2}+5 n$
Comparing the coefficient of $n^{2}$ on both sides, we obtain
$\frac{d}{2}=3$
$\Rightarrow d=6$
Comparing the coefficient of $n$ on both sides, we obtain
$a-\frac{d}{2}=5$
$\Rightarrow a-3=5$
$\Rightarrow a=8$
Therefore, from $(1),$ we obtain
$8+(m-1) 6=164$
$\Rightarrow(m-1) 6=164-8=156$
$\Rightarrow m-1=26$
$\Rightarrow m=27$
Thus, the value of $m$ is $27 .$
જો સમીકરણ $(b -c)x^2 + (c - a)x + (a - b) = 0$ ના ઉકેલો સમાન હોય, તો $a, b, c$ કઈ શ્રેણી હશે ?
જો એક સમાંતર શ્રેણી માટે $S_{2n} = 2S_n$ હોય, તો $S_{3n}/ S_n = …….$
જો સમીકરણ $x^3 - 9x^2 + \alpha x - 15 = 0 $ ના બીજો સમાંતર શ્રેણીમાં હોય તો $\alpha$ ની કિમત મેળવો
જો $\log _{10} 2, \log _{10} (2^x + 1), \log _{10} (2^x + 3)$ સમાંતર શ્રેણીમાં હોય તો
જો $\frac{1}{{b\, + \,c}},\,\frac{1}{{c\, + \,a}},\,\frac{1}{{a\, + \,b}}$ સમાંતર શ્રેણીમાં હોય, તો $a^2, b^2, c^2$ કઈ શ્રેણીમાં હશે ?