એક સમાંતર શ્રેણીનાં $n$ પદોનો સરવાળો $3 n^{2}+5 n$ અને $m$ મું પદ $164$ છે, તો $m$ નું મૂલ્ય શોધો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively. 

$a_{m}=a+(m-1) d=164$        ............$(1)$

Sum of $n$ terms: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$

Here,

$\frac{n}{2}[2 a+n d-d]=3 n^{2}+5 n$

$\Rightarrow n a+n^{2} \cdot \frac{d}{2}-\frac{n d}{2}=3 n^{2}+5 n$

Comparing the coefficient of $n^{2}$ on both sides, we obtain

$\frac{d}{2}=3$

$\Rightarrow d=6$

Comparing the coefficient of $n$ on both sides, we obtain

$a-\frac{d}{2}=5$

$\Rightarrow a-3=5$

$\Rightarrow a=8$

Therefore, from $(1),$ we obtain

$8+(m-1) 6=164$

$\Rightarrow(m-1) 6=164-8=156$

$\Rightarrow m-1=26$

$\Rightarrow m=27$

Thus, the value of $m$ is $27 .$

Similar Questions

વિધાન- I : બે સમાંતર શ્રેણીના $n$ પદોનો સરવાળો ગુણોત્તર $(7n + 1) : (4n + 17)$ હોય, તો તેમના $n$ માં પદોનો ગુણાકાર $7 : 4$ થાય.વિધાન- II : જો $S_n = an^2 + bn + c,$ હોય, તો $T_n = S_n - S_{n-1}$ થાય.

એક માણસ $4500$ ચલણી નોટોની ગણતરી કરે છે. ધારો કે $a_n $ નોટોની સંખ્યા દર્શાવે છે. તે $n$ મિનીટમાં ગણતરી કરે છે. જો $a_1$ = $a_2$ = … = $a_1$0 $= 150$ અને $a_{10}, a_{11},.....$  સમાંતર શ્રેણીના સામાન્ય તફાવત $-2$  સાથે હોય, તો તેના દ્વારા બધી નોટોની ગણતરી કરવા માટે લાગતો સમય કેટલા .............. મિનિટ હશે ?

આપેલ ગણ $\{9,99,999,...., 999999999\}$ ના નવ સંખ્યાઓનો સમાંતર મધ્યક $9$ અંકોનો $N$,જ્યાં બધા અંકો ભિન્ન છે , સંખ્યા $N$ માં ક્યો અંક ન હોય ? 

અહી $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$ એ સમાંતર શ્રેણીમાં છે. જો  $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$ હોય તો  $\frac{a_{11}}{a_{10}}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

ધારો કે $A =\left\{1, a _{1}, a _{2} \ldots \ldots a _{18}, 77\right\}$ પૂર્ણકોનો ગણ છે જ્યાં $1< a _{1}< a _{2}<\ldots \ldots< a _{18}<77$. ધરો કે ગણ $A + A =\{ x + y : x , y \in A \} \quad$ બરાબર $39$ ઘટકો સમાવે છે તો $a_{1}+a_{2}+\ldots \ldots+a_{18}$ નું મૂલ્ય.................. છે 

  • [JEE MAIN 2022]