यदि किसी समांतर श्रेणी के $n$ वें पद का योगफल $3 n^{2}+5 n$ हैं तथा इसका $m$ वाँ पद $164$ है, तो $m$ का मान ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively. 

$a_{m}=a+(m-1) d=164$        ............$(1)$

Sum of $n$ terms: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$

Here,

$\frac{n}{2}[2 a+n d-d]=3 n^{2}+5 n$

$\Rightarrow n a+n^{2} \cdot \frac{d}{2}-\frac{n d}{2}=3 n^{2}+5 n$

Comparing the coefficient of $n^{2}$ on both sides, we obtain

$\frac{d}{2}=3$

$\Rightarrow d=6$

Comparing the coefficient of $n$ on both sides, we obtain

$a-\frac{d}{2}=5$

$\Rightarrow a-3=5$

$\Rightarrow a=8$

Therefore, from $(1),$ we obtain

$8+(m-1) 6=164$

$\Rightarrow(m-1) 6=164-8=156$

$\Rightarrow m-1=26$

$\Rightarrow m=27$

Thus, the value of $m$ is $27 .$

Similar Questions

किसी समांतर श्रेणी का $p$ वाँ, $q$ वाँ $r$ वाँ पद क्रमशः $a, b, c$ हैं, तो सिद्ध कीजिए

$(q-r) a+(r-p) b+(p-q) c=0$

यदि एक समान्तर श्रेणी का $10^{\text {th }}$ वां पद $\frac{1}{20}$ है तथा इसका $20^{\text {th }}$ वां पद $\frac{1}{10}$ है, तो इसके प्रथम $200$ पदों का योग है

  • [JEE MAIN 2020]

यदि किसी समान्तर अनुक्रम की तीन संख्याओं का योग $15$ एवं उनके वर्गों का योग $83$ हो, तो संख्यायें हैं

कोई किसान एक पुराने ट्रैक्टर को $12000$ रू में खरीदता है। वह $6000$ रू नकद भुगतान करता है और शेष राशि को $500$ रू की वार्षिक किस्त के अतिरिक्त उस धन पर जिसका भुगतान न किया गया हो $12 \%$ वार्षिक ब्याज भी देता है। किसान को ट्रेक्टर की कुल कितनी कीमत देनी पड़ेगी ?

प्रथम $n$ प्राकृत संख्याओं का समान्तर माध्य होगा