यदि किसी समांतर श्रेणी के प्रथम $p$ पदों का योग, प्रथम $q$ पदों के योगफल के बराबर हो तो प्रथम $(p+q)$ पदों का योगफल ज्ञात कीजिए।
Let $a$ and $d$ be the first term and the common difference of the $A.P.$ respectively.
Here,
$S_{P}=\frac{p}{2}[2 a+(p-1) d]$
$S_{q}=\frac{p}{2}[2 a+(q-1) d]$
According to the given condition, $\frac{p}{2}[2 a+(p-1) d]=\frac{q}{2}[2 a+(q-1) d]$
$\Rightarrow p[2 a+(p-1) d]=q[2 a+(q-1) d]$
$\Rightarrow 2 a p+p d(p-1)=2 a q+q d(q-1)$
$\Rightarrow 2 a(p-q)+d[p(p-1)-q(q-1)]=0$
$\Rightarrow 2 a(p-q)+d\left[p^{2}-p-q^{2}+q\right]=0$
$\Rightarrow 2 a(p-q)+d[(p-q)(p+q)-(p-q)]=0$
$\Rightarrow 2 a(p-q)+d[(p-q)(p+q-1)]=0$
$\Rightarrow 2 a+d(p+q-1)=0$
$\Rightarrow d=\frac{-2 a}{p+q-1}$ .........$(1)$
$\therefore S_{p+q}=\frac{p+q}{2}[2 a+(p+q-1) \cdot d]$
$\Rightarrow S_{p+q}=\frac{p+q}{2}\left[2 a+(p+q-1)\left(\frac{-2 a}{p+q-1}\right)\right]$ [ From $(1)$ ]
$=\frac{p+q}{2}[2 a-2 a]$
$=0$
Thus, the sum of the first $(p+q)$ terms of the $A.P.$ is $0$
यदि $\frac{{3 + 5 + 7 + ......{\text{upto}}\;n\;{\text{terms}}}}{{5 + 8 + 11 + ....{\text{upto}}\;10\;{\text{terms}}}} = 7$, तो $n$ का मान है
यदि $b + c,$ $c + a,$ $a + b$ हरात्मक श्रेणी में हों, तो $\frac{a}{{b + c}},\frac{b}{{c + a}},\frac{c}{{a + b}}$ होंगे
यदि किसी समांतर श्रेणी के प्रथम $p, q, r$ पदों का योगफल क्रमशः $a, b$ तथा $c$ हो तो सिद्ध कीजिए कि
$\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
यदि एक शून्येतर समान्तर श्रेढ़ी का $19$ वां पद शून्य है, तो इसका ($49$ वाँ) : ($29$ वाँ पद) है
$1$ व $100$ के बीच $3$ के गुणज वाली प्राकृत संख्याओं का योग है