If the sum of the first $n$ terms of the series $\sqrt 3 + \sqrt {75} + \sqrt {243} + \sqrt {507} + ......$ is $435\sqrt 3 $ , then $n$ equals
$18$
$15$
$13$
$29$
The sum of all the elements in the set $\{\mathrm{n} \in\{1,2, \ldots \ldots ., 100\} \mid$ $H.C.F.$ of $n$ and $2040$ is $1\,\}$ is equal to $.....$
If the $10^{\text {th }}$ term of an A.P. is $\frac{1}{20}$ and its $20^{\text {th }}$ term is $\frac{1}{10},$ then the sum of its first $200$ terms is
The sums of $n$ terms of two arithmatic series are in the ratio $2n + 3:6n + 5$, then the ratio of their ${13^{th}}$ terms is
If $3^{2 \sin 2 \alpha-1},14$ and $3^{4-2 \sin 2 \alpha}$ are the first three terms of an $A.P.$ for some $\alpha$, then the sixth term of this $A.P.$ is
Let $X$ be the set consisting of the first $2018$ terms of the arithmetic progression $1,6,11$,
. . . .and $Y$ be set consisting of the first $2018$ terms of the arithmetic progression $9, 16, 23$,. . . . . Then, the number of elements in the set $X \cup Y$ is. . . .