8. Sequences and Series
hard

If the sum of the first $n$ terms of the series $\sqrt 3  + \sqrt {75}  + \sqrt {243}  + \sqrt {507}  + ......$ is $435\sqrt 3 $ , then $n$ equals

A

$18$

B

$15$

C

$13$

D

$29$

(JEE MAIN-2017)

Solution

$\sqrt 3 \left[ {1 + \sqrt {25}  + \sqrt {81}  + \sqrt {69}  + …..} \right] = 435\sqrt 3 $

$ \Rightarrow \sqrt 3  = \left[ {1 + 5 + 9 + 13 + ….. + {T_n}} \right] = 435\sqrt 3 $

$ \Rightarrow \sqrt 3  \times \frac{n}{2}\left[ {2 + \left( {n – 1} \right)4} \right] = 435\sqrt 3 $

$ \Rightarrow 2n + 4{n^2} – 4n = 870$

$ \Rightarrow 4{n^2} – 2n – 870 = 0$

$ \Rightarrow 2{n^2} – n – 435 = 0$

$ \Rightarrow n = \frac{{1 \pm \sqrt 1  + 4 \times 2 \times 432}}{4} = \frac{{1 \pm 59}}{4}$

$\therefore \,\,\,\,n = \frac{{1 \pm 59}}{4} = 15$; or $ = \frac{{1 – 59}}{4} = 14.5$

 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.