$x$ के किस मान के लिए ${\log _a}x + {\log _{\sqrt a }}x + {\log _{3\sqrt a }}x + ......... + {\log _{a\sqrt a }}x = \frac{{a + 1}}{2}$ होगा
$x = a$
$x = {a^a}$
$x = {a^{ - 1/a}}$
$x = {a^{1/a}}$
माना $a _{1}, a _{2}, \ldots \ldots, a _{21}$ समांतर श्रेढ़ी में इस प्रकार हैं कि $\sum_{n=1}^{20} \frac{1}{a_{n} a_{n+1}}=\frac{4}{9}$ है। यदि इस समांतर श्रेढ़ी का योगफल 189 है, तब $a _{6} a _{16}$ बराबर है
यदि समान्तर श्रेणी के $n$ पदों का योग $3{n^2} + 5n$ व ${T_m} = 164$ हो, तो $m = $
तीन संख्यायें समान्तर श्रेणी में हैं जिनका योगफल $33$ है एवं गुणनफल $792$ है, तो इनमें से सबसे छोटी संख्या है
मान लें कि प्राकृत संख्याएँ $a, b, c, d, e$ एक अंकगणितीय श्रेढ़ी $(arithmetic\,\,progression)$ में इस प्रकार हैं कि $a+b+c+d+e$ एक पूर्णांक का घन $(cube)$ है तथा $b+c+d$ एक पूर्णांक का वर्ग है। तब $c$ संख्या में न्यूनतम अंक का मान है
माना $a_{1}, a_{2}, a_{3}, \ldots \ldots, a_{n}, \ldots .$ एक समांतर श्रेढ़ी में हैं। यदि $a_{3}+a_{7}+a_{11}+a_{15}=72$ है, तो उसके प्रथम $17$ पदों का योग बराबर है