श्रेणी $a,a + nd,\,\,a + 2nd$ का माध्य होगा
$a + (n - 1)\,d$
$a + nd$
$a + (n + 1)\,d$
इनमें से कोई नहीं
माना $a _{1}, a _{2}, \ldots \ldots, a _{21}$ समांतर श्रेढ़ी में इस प्रकार हैं कि $\sum_{n=1}^{20} \frac{1}{a_{n} a_{n+1}}=\frac{4}{9}$ है। यदि इस समांतर श्रेढ़ी का योगफल 189 है, तब $a _{6} a _{16}$ बराबर है
किसी समांतर श्रेणी का $p$ वाँ, $q$ वाँ $r$ वाँ पद क्रमशः $a, b, c$ हैं, तो सिद्ध कीजिए
$(q-r) a+(r-p) b+(p-q) c=0$
$p , q \in R , q > 0$, के लिए वास्तविक मान फलन $f ( x )=( x - p )^2- q , x \in R$ का विचार कीजिए। माना $a _1, a _2, a _3$ तथा $a _4$ एक धनात्मक सार्व अंतर की संमातर श्रेढ़ी में हैं तथा इनका माध्य $p$ है। यदि $i=1,2,3,4$ के लिए $\left|f\left(a_i\right)\right|=500$ है, तो $f ( x )=0$ के मूलों का निरपेक्ष अंतर है $...........$
यदि किसी समांतर श्रेणी के $n$ पदों का योग $n P +\frac{1}{2} n(n-1) Q$, है, जहाँ $P$ तथा $Q$ अचर हो तो सार्व अंतर ज्ञात कीजिए।
यदि एक समांतर श्रेढ़ी का प्रथम पद $3$ है तथा इसके प्रथम $25$ पदों का योग, इसके अगले $15$ पदों के योग के बराबर है, तो इस समांतर श्रेढ़ी का सार्वअंतर है