श्रेणी $a,a + nd,\,\,a + 2nd$ का माध्य होगा
$a + (n - 1)\,d$
$a + nd$
$a + (n + 1)\,d$
इनमें से कोई नहीं
(b) समांतर माध्य $ = \frac{{a + (a + nd) + (a + 2nd)}}{3}$
$ = \frac{{3a + 3nd}}{3} = a + nd$.
श्रेढ़ियों $4,9,14,19, \ldots \ldots, 25$ पदों तक तथा $3,6,9,12, \ldots \ldots ., 37$ पदों तक में उभयनिष्ठ पदों की संख्या है:
एक समान्तर श्रेणी का छठवां पद $2$ के बराबर है, तब गुणनफल ${a_1}{a_4}{a_5}$ को न्यूनतम बनाने वाला समान्तर श्रेणी का सार्वअन्तर है
माना भिन्न पदों वाली समांतर श्रेढ़ी (non-constant $A.P.$) $a _{1}, a _{2}$, $a _{3}, \ldots \ldots \ldots \ldots . . .$ के प्रथम $n$ पदों का योगफल $50 n +\frac{ n ( n -7)}{2} A$ है, जहाँ $A$ एक अचर है। यदि इस समांतर श्रेढ़ी का सार्वअंतर $d$ है, तो क्रमित युग्म $\left( d , a _{50}\right)$ बराबर है $:$
$p , q \in R , q > 0$, के लिए वास्तविक मान फलन $f ( x )=( x – p )^2- q , x \in R$ का विचार कीजिए। माना $a _1, a _2, a _3$ तथा $a _4$ एक धनात्मक सार्व अंतर की संमातर श्रेढ़ी में हैं तथा इनका माध्य $p$ है। यदि $i=1,2,3,4$ के लिए $\left|f\left(a_i\right)\right|=500$ है, तो $f ( x )=0$ के मूलों का निरपेक्ष अंतर है $………..$
यदि किसी समांतर श्रेणी की तीन संख्याओं का योग $24$ है तथा उनका गुणनफल $440$ है, तो संख्याएँ ज्ञात कीजिए।
Confusing about what to choose? Our team will schedule a demo shortly.