यदि रैखिक समीकरण निकाय $ x-2 y+z=-4 $; $ 2 x+\alpha y+3 z=5 $; $ 3 x-y+\beta z=3$ के अनंत हल हैं, तो $12 \alpha+13 \beta$ बराबर है
$60$
$64$
$54$
$58$
समीकरण $\left| {\,\begin{array}{*{20}{c}}1&4&{20}\\1&{ - 2}&5\\1&{2x}&{5{x^2}}\end{array}\,} \right| = 0$ के मूल हैं
समीकरण $\left| {\,\begin{array}{*{20}{c}}0&x&{16}\\x&5&7\\0&9&x\end{array}\,} \right| = 0$ के मूल हैं
माना समीकरण निकाय
$x+y+\alpha z=2$
$3 x+y+z=4$
$x+2 z=1$
का अद्वितीय हल $\left( x ^*, y ^*, z ^*\right)$ है यदि $\left(\alpha, x ^*\right)$, $\left( y ^*, \alpha\right)$ तथा $\left( x ^*,- y ^*\right)$ संरेखीय बिन्दु हो, तो $\alpha$ की सभी संभव मानों का निरपेक्ष मान होगा :
यदि $a > 0$ और $a{x^2} + 2bx + c$ का विविक्तिकर ऋणात्मक है, तब $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ का मान होगा
समीकरण $\left| {\,\begin{array}{*{20}{c}}x&0&8\\4&1&3\\2&0&x\end{array}\,} \right| = 0$ के मूल हैं