- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
hard
If the tangent at the point $P$ on the circle ${x^2} + {y^2} + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point $Q$ on the $y$- axis, then the length of $PQ$ is
A
$4$
B
$2\sqrt 5 $
C
$5$
D
$3\sqrt 5 $
(IIT-2002)
Solution
(c) Let $P = ({x_1},{y_1})$ The tangent at $P$ is
$x{x_1} + y{y_1} + 3(x + {x_1}) + 3(y + {y_1}) – 2 = 0$…..(i)
Co-ordinates of $Q$ satisfy (i), $5x – 2y + 6 = 0,\,x = 0.$
So, $3{x_1} + 6{y_1} + 7 = 0$ and $Q = (0,\,3)$
$\therefore $ $P{Q^2} = x_1^2 + {({y_1} – 3)^2} = x_1^2 + y_1^2 – 6{y_1} + 9$
$ = 11 – 6{x_1} – 12{y_1}$, $(\because \,x_1^2 + y_1^2 + 6{x_1} + 6{y_1} – 2 = 0)$
$ = 11 – 2(3{x_1} + 6{y_1}) = 11 – 2( – 7) = 25$. So, $PQ =5$.
Standard 11
Mathematics