10-1.Circle and System of Circles
hard

Let $PQ$ and $RS$ be tangents at the extremeties of the diameter $PR$ of a circle of radius $r$. If $PS$ and $RQ$ intersect at a point $X$ on the circumference of the circle, then $2r$ equals

A

$\sqrt {PQ.RS} $

B

$\frac{{PQ + RS}}{2}$

C

$\frac{{2PQ.\,\,RS}}{{PQ + RS}}$

D

$\sqrt {\frac{{P{Q^2} + R{S^2}}}{2}} $

(IIT-2001)

Solution

(a) $\tan \theta = \frac{{PQ}}{{PR}} = \frac{{PQ}}{{2r}}$

Also $\tan \left( {\frac{\pi }{2} – \theta } \right) = \frac{{RS}}{{2r}}$

$i.e.$, $\cot \theta = \frac{{RS}}{{2r}}$

$\tan \theta .\cot \theta = \frac{{PQ.RS}}{{4{r^2}}}$

==> $4{r^2} = PQ.RS$

==> $2r = \sqrt {(PQ)(RS)} $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.