જો અતિવલય $4y^2 = x^2 + 1$ પરના સ્પર્શકો યામાક્ષોને ભિન્ન બિંદુઓ $A$ અને $B$ માં છેદે છે તો રેખા $AB$ ના મધ્યબિંદુનો બિંદુપથ મેળવો
$x^2 - 4y^2 + 16 x^2y^2 = 0$
$4x^2 -y^2 + 16 x^2 y^2 = 0$
$4x^2 -y^2 - 16 x^2 y^2 = 0$
$x^2 - 4y^2 - 16 x^2 y^2 = 0$
જો અતિવલય $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{5} = 1$ ના પ્રથમ ચરણમાં નાભીલંબનો સ્પર્શક $x-$ અક્ષ અને $y-$ અક્ષને અનુક્રમે બિંદુઓ $A$ અને $B$ માં છેદે તો $(OA)^2 - (OB)^2$ = ...................... જ્યાં $O$ એ ઉંગમબિંદુ
અતિવલય $4x^2 - 9y^2\, = 36$ નો અભિલંબ યામાક્ષો $x$ અને $y$ ને અનુક્રમે બિંદુ $A$ અને $B$ માં છેદે છે જો સમાંતરબાજુ ચતુષ્કોણ $OABP$ ( $O$ એ ઉંગમબિંદુ છે) બનાવવામાં આવે તો બિંદુ $P$ નો બિંદુપથ મેળવો.
બિંદુ $\left( {a\,\,\sec \,\theta ,\,\,b\,\,\tan \,\,\theta } \right)$ આગળ અતિવલય $\frac{{{x^2}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,$ ના અભિલંબનું સમીકરણ મેળવો.
અહી બિંદુઓ $\mathrm{A}\,(\sec \theta, 2 \tan \theta)$ અને $\mathrm{B}\,(\sec \phi, 2 \tan \phi)$ જ્યાં $\theta+\phi=\pi / 2$ એ અતિવલય $2 \mathrm{x}^{2}-\mathrm{y}^{2}=2$ પરના બિંદુઓ છે. જો $(\alpha, \beta)$ એ આતિવલય ના બિંદુઓ $\mathrm{A}$ અને $\mathrm{B}$ આગળના અભિલંબના છેદબિંદુ હોય તો $(2 \beta)^{2}$ ની કિમંત મેળવો.
જેનાં નાભિઓ $(0,\,\pm 3)$ અને શિરોબિંદુઓ $(0,\,\pm \frac {\sqrt {11}}{2})$ હોય તેવા અતિવલયનું સમીકરણ મેળવો.