7.Binomial Theorem
medium

यदि $\left(\frac{3}{2} x ^{2}-\frac{1}{3 x }\right)^{9}$ के विस्तार में, $x$ से स्वतंत्र पद $k$ है, तो $18 k$ बराबर है 

A

$9$

B

$11$

C

$5$

D

$7$

(JEE MAIN-2020)

Solution

$T _{ r +1}={ }^{9} C _{ r }\left(\frac{3}{2} x ^{2}\right)^{9- r }\left(-\frac{1}{3 x }\right)^{ r }$

$T _{ r +1}={ }^{9} C _{ r }\left(\frac{3}{2}\right)^{9- r }\left(-\frac{1}{3}\right)^{ r } x ^{18-3 r }$

For independent of x

$18-3 r=0, r=6$

$\therefore \quad T _{7}={ }^{9} C _{6}\left(\frac{3}{2}\right)^{3}\left(-\frac{1}{3}\right)^{6}=\frac{21}{54}= k$

$\therefore \quad 18 k =\frac{21}{54} \times 18=7$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.