If the variable line $3 x+4 y=\alpha$ lies between the two circles $(x-1)^{2}+(y-1)^{2}=1$ and $(x-9)^{2}+(y-1)^{2}=4$ without intercepting a chord on either circle, then the sum of all the integral values of $\alpha$ is .... .
$164$
$166$
$165$
$199$
$P, Q$ and $R$ are the centres and ${r_1},\,\,{r_2},\,\,{r_3}$ are the radii respectively of three co-axial circles, then $QRr_1^2 + RP\,r_2^2 + PQr_3^2$ is equal to
Two circles ${S_1} = {x^2} + {y^2} + 2{g_1}x + 2{f_1}y + {c_1} = 0$ and ${S_2} = {x^2} + {y^2} + 2{g_2}x + 2{f_2}y + {c_2} = 0$ cut each other orthogonally, then
Consider a circle $C_1: x^2+y^2-4 x-2 y=\alpha-5$.Let its mirror image in the line $y=2 x+1$ be another circle $C _2: 5 x ^2+5 y ^2-10 fx -10 gy +36=0$.Let $r$ be the radius of $C _2$. Then $\alpha+ r$ is equal to $......$.
If $d$ is the distance between the centres of two circles, ${r_1},{r_2}$ are their radii and $d = {r_1} + {r_2}$, then
The number of circles touching the line $y - x = 0$ and the $y$-axis is