The number of common tangents to the circles ${x^2} + {y^2} = 1$and ${x^2} + {y^2} - 4x + 3 = 0$ is

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

Suppose $S_1$ and $S_2$ are two unequal circles, $A B$ and $C D$ are the direct common tangents to these circles. A transverse common tangent $P Q$ cuts $A B$ in $R$ and $C D$ in $S$. If $A B=10$, then $R S$ is

  • [KVPY 2014]

If the circles ${x^2} + {y^2} + 2ax + cy + a = 0$ and ${x^2} + {y^2} - 3ax + dy - 1 = 0$ intersect in two distinct points $P$ and $Q$ then the line $5x + by - a = 0$ passes through $P$ and $Q$ for

  • [AIEEE 2005]

The radical centre of the circles ${x^2} + {y^2} + 4x + 6y = 19,{x^2} + {y^2} = 9$ and ${x^2} + {y^2} - 2x - 2y = 5$ will be

Let the circles $C_1:(x-\alpha)^2+(y-\beta)^2=r_1^2$ and $C_2:(x-8)^2+\left(y-\frac{15}{2}\right)^2=r_2^2$ touch each other externally at the point $(6,6)$. If the point $(6,6)$ divides the line segment joining the centres of the circles $C_1$ and $C_2$ internally in the ratio $2: 1$, then $(\alpha+\beta)+4\left(r_1^2+r_2^2\right)$ equals

  • [JEE MAIN 2024]

A circle $C_1$ of radius $2$ touches both $x$ -axis and $y$ -axis. Another circle $C_2$ whose radius is greater than $2$ touches circle $C_1$ and both the axes. Then the radius of  circle $C_2$ is-